Skip to main content
Log in

Structure of K-Substituted Zeolite Clinoptillolite and Its Behavior Upon Compression in Penetrating and Non-Penetrating Media

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

K-substituted zeolite - clinoptillolite

K6.16Na0.16Ca0.07Mg0.03(H2O)19.2|[Al6.45Si29.55O72] (space group C2/m, a = 17.6490(3) Å, b = 17.9982(2) Å, c = 7.39329(12) Å, β = 116.0655(19)°, V = 2109.63(5) Å3, Z = 1) is studied by the single crystal X-ray diffraction analysis under ambient conditions and also upon compression to 4 GPa in penetrating (water-containing) and non-penetrating (paraffin) media. Compression of Ksubstituted clinoptillolite in a water:ethanol (1:1) mixture results in its additional hydration: inclusion of 2.2 additional H2O molecules into the structure at the initial stage. Upon further compression the H2O concentration increases by two molecules. This is caused by additional occupancy of partially vacant H2O sites. The cation environment practically does not change during overhydration. Changes in the coordination polyhedra of cations during compression in paraffin are reduced to a small (0.02-0.1 Å) decrease in bond lengths. Distinctions in the degree of hydration of the K-form upon compression in penetrating and non-penetrating media are manifested in the features of the compressibility of the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Coombs, A. Alberti, T. Armbruster, et al. Canad. Mineral., 1999, 35, 1571.

    Google Scholar 

  2. M. E. Gunter, T. Armbruster, T. Kohler, and C. R. Knowles. Am. Mineral., 1994, 79, 675.

    CAS  Google Scholar 

  3. P. Yang and T. Armbruster. J. Solid State Chem., 1996, 123, 140.

    Article  CAS  Google Scholar 

  4. P. Yang and T. Armbruster. Eur. J. Mineral., 1998, 10, 461.

    Article  CAS  Google Scholar 

  5. N. Döbelin and T. Armbruster. Microporous Mesoporous Mater., 2003, 61, 85.

    Article  CAS  Google Scholar 

  6. N. Döbelin and T. Armbruster. Am. Mineral., 2003, 88, 527.

    Article  Google Scholar 

  7. L. Dimova, B. L. Shivachev, and R. P. Nikolova. Bulg. Chem. Commun., 2011, 43, 217.

    CAS  Google Scholar 

  8. Y. Garcia–Basabe, A. R. Ruiz Salvador, G. Maurin, et al. Microporous Mesoporous Mater., 2012, 155, 233.

    Article  CAS  Google Scholar 

  9. T. Armbruster. Stud. Surf. Sci. Catal., 2001, 135, 13.

    Article  Google Scholar 

  10. G. D. Gatta and Y. Lee. Miner. Mag., 2014, 78, 267.

    Article  CAS  Google Scholar 

  11. G. D. Gatta, P. Lotti, and G. Tabacchi. Phys. Chem. Miner., 2018, 45, 115.

    Article  CAS  Google Scholar 

  12. P. Comodi, G. D. Gatta, and P. F. Zanazzi. Eur. J. Miner.., 2001, 13, 497.

    Article  CAS  Google Scholar 

  13. Yu. Seryotkin. Microporous Mesoporous Mater., 2015, 214, 127.

    Article  CAS  Google Scholar 

  14. E. Galli, G. Gottardi, H. Mayer, et al. Acta Crystallogr., 1983, B39, 189.

    Google Scholar 

  15. Yu. V. Seryotkin. Microporous Mesoporous Mater., 2016, 235, 20.

    Article  CAS  Google Scholar 

  16. G. Sheldrick. Acta Crystallogr., 2008, A64, 112.

    Google Scholar 

  17. K. Koyama and Y. Takeuchi. Z. Kristallogr., 1977, 145, 216.

    CAS  Google Scholar 

  18. R. Boehler. Rev. Sci. Instrum., 2006, 77(11), Art No. 1151103.

    Google Scholar 

  19. G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman. J. Appl. Phys., 1975, 46, 2774.

    Article  CAS  Google Scholar 

  20. R. J. Angel and J. Gonzalez–Platas. J. Appl. Crystallogr., 2013, 46, 252.

    Article  CAS  Google Scholar 

  21. P. Lotti, G. D. Gatta, M. Merlini, and H. P. Liermann. Z. Kristallogr., 2015, 230, 201.

    CAS  Google Scholar 

  22. T. Armbruster and M. E. Gunter. Am. Mineral., 1991, 76, 1872.

    CAS  Google Scholar 

  23. T. Armbruster. Am. Mineral., 1993, 78, 260.

    CAS  Google Scholar 

  24. R. J. Angel, J. Gonzalez–Platas, and M. Alvaro. Z. Kristallogr., 2014, 229, 405.

    CAS  Google Scholar 

  25. G. D. Gatta, P. Comodi, and P.F. Zanazzi. Microporous Mesoporous Mater., 2003, 61, 105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Seryotkin.

Additional information

Original Russian Text © 2018 Yu. V. Seryotkin, V. V. Bakakin.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 6, pp. 1443–1451, July-August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seryotkin, Y.V., Bakakin, V.V. Structure of K-Substituted Zeolite Clinoptillolite and Its Behavior Upon Compression in Penetrating and Non-Penetrating Media. J Struct Chem 59, 1392–1399 (2018). https://doi.org/10.1134/S0022476618060203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618060203

Keywords

Navigation