Skip to main content

Advertisement

Log in

Structural behavior of Tl-exchanged natrolite at high pressure depending on the composition of pressure-transmitting medium

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The structural evolution of Tl-exchanged natrolite with idealized formula Tl2[Al2Si3O10]·2H2O, compressed in penetrating (water:ethanol 1:1) and non-penetrating (paraffin) media, was studied up to 4 GPa. The presence of Tl+ with non-bonded electron lone pairs, which can be either stereo-chemically active or passive, determines distinctive features of the high-pressure behavior of the Tl-form. The effective volume of assemblages Tl+(O,H2O) n depends on the E-pairs activity: single-sided coordination correlates with smaller volumes. At ambient conditions, there are two types of Tl positions, only one of them having a nearly single-sided coordination as a characteristic of stereo-activity of the Tl+ E pair. Upon the compression in paraffin, a phase transition occurs: a 5% volume contraction of flexible natrolite framework is accompanied by the conversion of all the Tl+ cations into stereo-chemically active state with a single-sided coordination. This effect requires the reconstruction of all the extra-framework subsystems with the inversion of the cation and H2O positions. The compression in water-containing medium leads to the increase of H2O content up to three molecules pfu through the filling of partly vacant positions. This hinders a single-sided coordination of Tl ions and preserves the configuration of their ion-molecular subsystem. It is likely that the extra-framework subsystem is responsible for the super-structure modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ancharov AI, Manakov AYu, Mezentsev NA, Tolochko BP, Sheromov MA, Tsukanov VM (2001) New station at the 4th beamline of the VEPP-3 storage ring. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 470:80–83. doi:10.1016/S0168-9002(01)01029-4

    Article  Google Scholar 

  • Baur WH, Kassner D, Kim ChH, Sieber NHW (1990) Flexibility and distortion of the framework of natrolite: crystal structures of ion-exchanged natrolites. Eur J Miner 2:761–769. doi:10.1127/ejm/2/6/0761

    Article  Google Scholar 

  • Belitsky IA, Fursenko BA, Gabuda SP, Kholdeev OV, Seryotkin YuV (1992) Structural transformations in natrolite and edingtonite. Phys Chem Miner 18:497–505

    Article  Google Scholar 

  • Colligan M, Lee Y, Vogt T, Celestian AJ, Parise JB, Marshall WG, Hriljac JA (2005) High-pressure neutron diffraction study of superhydrated natrolite. J Phys Chem B 109:18223–18225. doi:10.1021/jp054142x

    Article  Google Scholar 

  • Firor RL, Seff K (1977) Near-zero-coordinate thallium(I). the crystal structures of hydrated and dehydrated zeolite A fully exchanged with TlOH. J Amer Chem Soc 99:4039–4044

    Article  Google Scholar 

  • Gatta GD, Lee Y (2014) Zeolites at high pressure: a review. Miner Mag 78:267–292. doi:10.1180/minmag.2014.078.2.04

    Article  Google Scholar 

  • Gatta GD, Lotti P, Merlini M, Caputo D, Aprea P, Lausi A, Colella C (2014) Thermo-elastic behavior and P/T phase stability of TlAlSiO4 (ABW). Micropor Mesopor Mater 197:262–267. doi:10.1016/j.micromeso.2014.06.015

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press Res 14:235–248

    Article  Google Scholar 

  • Huddersman KD, Rees LVC (1991) X-ray powder diffraction determination of the location of thallium cations in hydrated ZSM-5. Zeolites 11:270–276. doi:10.1016/S0144-2449(05)80231-3

    Article  Google Scholar 

  • Jeong GH, Lee YM, Kim Y, Vaughan DEW, Seff K (2006) Single crystal structure of fully dehydrated fully Tl + -exchanged zeolite Y, |Tl71 |[Si121Al71O384]-FAU. Micropor Mesopor Mater 94:313–319. doi:10.1016/j.micromeso.2006.01.023

    Article  Google Scholar 

  • Kholdeev OV, Belitsky IA, Fursenko BA, Goryainov SV (1987) Structural phase transformations in natrolite at high pressures. Doklady Acad Nauk SSSR 297:946–950

    Google Scholar 

  • Krogh Andersen E, Krogh Andersen IG, Ploug-Sørensen G (1990) Disorder in natrolites: structure determinations of three disordered natrolites and one lithium-exchanged disordered natrolite. Eur J Miner 2:799–807. doi:10.1127/ejm/2/6/0799

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR, pp 86–748

  • Lee Y, Vogt T, Hriljac JA, Parise JB, Artioli G (2002) Pressure-induced volume expansion of zeolites in the natrolite family. J Amer Chem Soc 124:5466–5475

    Article  Google Scholar 

  • Lee Y, Hriljac JA, Parise JB, Vogt T (2005) Pressure-induced stabilization of ordered paranatrolite: a new insight into the paranatrolite controversy. Am Miner 90:252–257. doi:10.2138/am.2005.1588 252

    Article  Google Scholar 

  • Lee Y, Lee Y, Seoung D (2010) Natrolite may not be a “soda-stone” anymore: structural study of fully K-, Rb-, and Cs-exchanged natrolite. Am Miner 95:1636–1641. doi:10.2138/am.2010.3607

    Article  Google Scholar 

  • Lee Y, Seoung D, Lee Y (2011) Natrolite is not be a “soda-stone” anymore: structural study of alkali (Li+), alkaline-earth (Ca2+, Sr2+, Ba2+) and heavy metal (Cd2+, Pb2+, Ag+) cation-exchanged natrolites. Am Miner 96:1718–1724. doi:10.2138/am.2011.3853

    Article  Google Scholar 

  • Lee Y, Seoung D, Jang Y-N, Vogt T, Lee Y (2013) Pressure-induced hydration and insertion of CO2 into Ag-natrolite. Chem Eur J 19:5806–5811. doi:10.1002/chem.201300314

    Article  Google Scholar 

  • Likhacheva AY, Seryotkin YV, Manakov AY, Goryainov SV, Ancharov AI, Sheromov MA (2007) Pressure-induced over-hydration of scolecite: a synchrotron powder diffraction study. Z Kristallogr Suppl 26:405–410

    Article  Google Scholar 

  • Lotti P, Arletti R, Gatta GD, Quartieri S, Vezzalini G, Merlini M, Dmitriev V, Hanfland M (2015) Compressibility and crystal–fluid interactions in all-silica ferrierite at high pressure. Micropor Mesopor Mater 218:42–54. doi:10.1016/j.micromeso.2015.06.044

    Article  Google Scholar 

  • Mentzen BF (2007) Crystallographic determination of the positions of the monovalent H, Li, Na, K, Rb and Tl cations in fully dehydrated MFI type zeolites. J Phys Chem C 111:18932–18941. doi:10.1021/jp077356i

    Article  Google Scholar 

  • Panich AM, Belitskii IA, Moroz NK, Gabuda SP, Drebushchak VA, Seretkin YuV (1990) Ionic and molecular-diffusion and the order-disorder phase-transition in the thallium form of natrolite. J Struct Chem 31:56–63

    Article  Google Scholar 

  • Parise JB, Corbin DR, Abrams L, Northrup P, Rakovan J, Nenoff TM, Stucky GD (1994) Structural relationships among some BePO-, BeAsO-, and AISiO-RHO frameworks. Zeolites 14:25–34. doi:10.1016/0144-2449(94)90050-7

    Article  Google Scholar 

  • Paukov IE, Kovalevskaya YuA, Seretkin YuV, Belitskii IA (2002) The thermodynamic properties and structure of potassium-substituted natrolite in the phase transition region. Russ J Phys Chem 76:1406–1410

    Google Scholar 

  • Paukov IE, Kovalevskaya YuA, Drebushchak VA, Seretkin YuV (2005) The thermodynamic properties of the thallium substituted natrolite form at low temperatures. Russ J Phys Chem 79:1926–1930

    Google Scholar 

  • Rashchenko SV, Seryotkin YV, Bakakin VV (2012) An X-ray single-crystal study of alkaline cations influence on laumontite hydration ability: II. Pressure-induced hydration of Na, K-rich laumontite. Micropor Mesopor Mater 159:126–131. doi:10.1016/j.micromeso.2012.04.029

    Article  Google Scholar 

  • Rashchenko SV, Likhacheva AYu, Bekker TB (2013) Preparation of a macrocrystalline pressure calibrant SrB4O7: Sm2+ suitable for the HP-HT powder diffraction. High Press Res 33:720–724. doi:10.1080/08957959.2013.819098

    Article  Google Scholar 

  • Seoung D, Lee Y, Kao CC, Vogt T, Lee Y (2013) Super-hydrated zeolites: pressure-induced hydration in natrolites. Chem Eur J 19:10876–10883. doi:10.1002/chem.201300591

    Article  Google Scholar 

  • Seoung D, Lee Y, Kao C-C, Vogt T, Lee Y (2015) Two-step pressure-induced superhydration in small pore natrolite with divalent extra-framework cations. Chem Mater 27:3874–3880. doi:10.1021/acs.chemmater.5b0050

    Article  Google Scholar 

  • Seryotkin YV (2016) High-pressure behavior of HEU-type zeolites: X-ray diffraction study of clinoptilolite-Na. Micropor Mesopor Mater 235:20–31. doi:10.1016/j.micromeso.2016.07.048

    Article  Google Scholar 

  • Seryotkin YV, Bakakin VV (2007) The reversibility of the paranatrolite-tetranatrolite transformation. Eur J Miner 19:593–598. doi:10.1127/0935-1221/2007/0019-1743

    Article  Google Scholar 

  • Seryotkin YuV, Bakakin VV (2014) Crystal structure of K-substituted gonnardite. Separation of local water-cation assemblages. Phys Chem Miner 41:173–180. doi:10.1007/s00269-013-0635-z

    Article  Google Scholar 

  • YuV Seryotkin, Bakakin VV, Belitsky IA (2004) The crystal structure of paranatrolite. Eur J Mineral 16:545–550. doi:10.1127/0935-1221/2004/0016-0545

    Article  Google Scholar 

  • YuV Seryotkin, Bakakin VV, Fursenko BA, Belitsky IA, Joswig W, Radaelli PG (2005) Structural evolution of natrolite during over-hydration: a high-pressure neutron diffraction study. Eur J Miner 17:305–313. doi:10.1127/0935-1221/2005/0017-0305

    Article  Google Scholar 

  • YuV Seryotkin, Likhacheva AYu, Rashchenko SV (2016) Structural evolution of Li-exchanged natrolite at pressure-induced over-hydration: an X-ray diffraction study. J Struct Chem 57:1377–1385. doi:10.1134/S0022476616070118

    Article  Google Scholar 

  • Siidra OI (2015) Crystal chemistry of oxygen-containing minerals and inorganic compounds of low-valence Tl, Pb, and Bi cations. Dissertation, Saint Petersburg State University

  • Spiridonova DV, Britvin SN, Krivovichev SV, Yakovenchuk VN (2008) Crystal structure of Tl-exchanged alkaline form of zorite. Vestnik Sankt Peterburg Univ (Ser 7) 3:41–45

    Google Scholar 

  • Thoeni W (1975) The crystal structure of hydrated zeolites Tl-A, Ca-A and Ag-A. Z Kristallogr 142:142–160

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34(2):210–213. doi:10.1107/S0021889801002242

    Article  Google Scholar 

  • Vezzalini G, Arletti R, Quartieri S (2014) High-pressure-induced structural changes, amorphization and molecule penetration in MFI microporous materials: a review. Acta Crystalllogr B70:444–451. doi:10.1107/S2052520614008014

    Google Scholar 

  • Yamazaki A, Kamioka K, Matsumoto H, Otsuka R (1987) Structure refinement of K-exchanged natrolite by Rietveld method. Mem School Sci Eng Waseda Univ 118:40–44

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Foundation of Basic Researches (Grant 16-05-00401) and bу state assignment project (0330-2016-0004). Structural experiments were carried out involving the equipment belonging to the Siberian Synchrotron and Terahertz Radiation Centre (SSTRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Seryotkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seryotkin, Y.V., Bakakin, V.V., Likhacheva, A.Y. et al. Structural behavior of Tl-exchanged natrolite at high pressure depending on the composition of pressure-transmitting medium. Phys Chem Minerals 44, 615–626 (2017). https://doi.org/10.1007/s00269-017-0887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0887-0

Keywords

Navigation