Skip to main content
Log in

Symbasis Between Formation Entalpies, Activation Energies of the Electrical Conductivity in Wüstite and in the Clusters of Its Crystal Lattice

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

It is shown that formation enthalpy and activation energy of the electrical conductivity in stoichiometric wüstite can be estimated with the methods of quantum chemistry using the properties of its clusters. The clusters are represented by crystal lattice fragments with fixed or optimized geometric parameters. The formation enthalpy is determined by extrapolating the energy of clusters according to the formulas of simple theories of clusters. The activation energy of electrical conductivity is calculated from relative total energies of formula units for various spin states of wüstite clusters. Calculations were performed with efficient quantum chemical methods PM7 and PBE/sbk which were chosen according to test calculations of bonding and ionization energies for the ground states of the iron atom, its ions, and some of its compounds. The results are in satisfactory agreement with experimental literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Starrost and E. A. Carter, B3.2 Quantum Structural Methods for the Solid State and Surfaces, in: Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.), Taylor & Francis, 2001. Print ISBN: 978-0-7503-0313-2. eBook ISBN: 978-1-4200-5072-1; doi: 10.1201/9781420050721.chb3.2.

  2. T. Eom, H-K. Lim, W. A. Goddard III, and H. Kim, J. Phys. Chem., 119, 556 (2015).

    CAS  Google Scholar 

  3. Y. Menn, X-W. Liu, C.-F. Huo, W.-P. Guo, D.-B. Cao, Q. Peng, A. Dearden, X. Gonze, Y. Yang, J. Wang, H. Jiao, Y. Li, and X.-D. Wen, J. Chem. Theory Comput., 12, No. 10, 5132 (2016).

    Article  Google Scholar 

  4. X. Lu, X. Xu, N. Wang, Q. Zhang, M. Ehara, and H. Nakatsuji, Chem. Phys. Lett., 291, Nos. 3/4, 445 (1998).

    Article  CAS  Google Scholar 

  5. T. Clark, J. Mol. Struct.: THEOCHEM, 530, 1 (2000).

    Article  CAS  Google Scholar 

  6. J. J. P. Stewart, J. Mol. Model., 13, No. 12, 1173 (2007).

    Article  CAS  Google Scholar 

  7. J. J. P. Stewart, J. Mol. Model., 19, 1 (2013).

    Article  CAS  Google Scholar 

  8. James J. P. Stewart, Stewart Computational Chemistry, MOPAC2016, Version: 16.299W; http://openmopac.net/manual/index_troubleshooting.html.

  9. HYPERCHEM-8.0.8. Permanent Site License Version. Small School. Departmental (Class C) www.hyper.com.

  10. D. N. Laikov, Chem. Phys. Lett., 281, 151 (1997).

    Article  CAS  Google Scholar 

  11. D. N. Laikov, Development of Ieanedan Efficient Approach of Molecular Calculations with the Density Functional Method, Its Application to Complex Chemical Problems, Candidate’s Thesis, Physico-Mathematical Sciences, Moscow State University, Moscow (2000).

    Google Scholar 

  12. D. N Laikov and Yu. A. Ustynyuk, Izv. Akad. Nauk, Ser. Khim., No. 3, 804 (2005).

    Google Scholar 

  13. G. V. Belov, V. S. Iorish, and V. S. Yungman, Teplofiz. Vys. Temp., No. 2, 209 (2000).

    Google Scholar 

  14. V. S. Iorish and V. S. Yungman (eds.), Database: Thermal Constants of Substances [in Russian]; http:www.chem.msu.su/rus/tsiv/welcome.html.

  15. O. P. Charkin, Stability and Structure of Gaseous Inorganic Molecules, Radicals, and Ions [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  16. H. Kayi and T. Clark, J. Mol. Model., 16, No. 6, 1109 (2009).

    Article  Google Scholar 

  17. V. N. Smirnov, Fiz.-Khim. Kinet. Gazov. Din., 8, 23 (2009) www.chemphys.edu.ru/pdf/2009-06-08-001.pdf.

    Google Scholar 

  18. J. A. Dean, Lange’s Handbook of Chemistry, McGraw-Hill, Inc. (1999).

    Google Scholar 

  19. R. B. Metz, C. Nicolas, M. Ahmed, and S. R. Leone, J. Chem. Phys., 123, 114313–1 (2005).

    Article  Google Scholar 

  20. T. Garcia-Sosa and M. Castro, Int. J. Quant. Chem., 80, 307 (2000).

    Article  CAS  Google Scholar 

  21. Yu. D. Tretyakov, Thermodynamics of Ferrites [in Russian], Khimiya, Leningrad (1967).

    Google Scholar 

  22. C. A. MсCammon and L.-G. Liu, Phys. Chem. Miner., 10, No. 3, 106 (1984).

    Article  Google Scholar 

  23. WWW-MINKRIST. Crystallographic and Crystallochemical Database for Minerals and Their Structural Analogs [in Russian], http://database.iem.ac.ru/mincryst, WWW-MINKRIST, Vyustit-5263 (2017).

    Google Scholar 

  24. G. A. Zhurko and D. A. Zhurko, Chemcraft, v. 1.6. build 348; www.chemcraftprog.com.

  25. R. Allouche, J. Comput. Chem., 32, 174 (2011).

    Article  CAS  Google Scholar 

  26. I. Ermakov and A. S. Naumkina, Vysokomol. Soedin., Ser. A, 58, No. 4, 388 (2016).

    Google Scholar 

  27. W. H. Qi and M. P. Wang, J. Mater. Sci. Lett., 21, 1743 (2002).

    Article  CAS  Google Scholar 

  28. D. Tomanek and S. Mukherjee, Phys. Rev. B., 28, No. 2, 665 (1983).

    Article  CAS  Google Scholar 

  29. I. Ermakov and A. P. Lar′kov, Izv. Tulskogo Gos. Univ., Estestv. Nauki, Iss. 1, Prt. 2, 117 (2014).

    Google Scholar 

  30. V. A. Kozheurov and G. G. Mikhailov, Zh. Fiz. Khim., 41, No. 12, 2892 (1967).

    CAS  Google Scholar 

  31. W. J. Hillegas, Seebeck Coefficient and Electrical Conductivity Measurements on Doped and Undoped Wustite, Ph.D. Thesis, Northwestern University, Evanston, Ill (1968).

    Google Scholar 

  32. F. Schrettlea, Ch. Kant, P. Lunkenheimer, F. Mayr, J. Deisenhofer, and A. Loid, Europ. Phys. J. B., 85, 164 (2012).

    Article  Google Scholar 

  33. H. K. Bowen, D. Adler, and B. H. Auker, J. Solid State Chem., 12, Nos. 3/4, 355 (1975) http://www.sciencedirect.com/science/article/pii/0022459675903400-fn1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Horishko.

Additional information

† Deceased.

Original Russian Text © 2018 A. I. Ermakov, B. A. Horishko.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 1, pp. 7–17, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakov, A.I., Horishko, B.A. Symbasis Between Formation Entalpies, Activation Energies of the Electrical Conductivity in Wüstite and in the Clusters of Its Crystal Lattice. J Struct Chem 59, 1–10 (2018). https://doi.org/10.1134/S0022476618010018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618010018

Keywords

Navigation