Skip to main content
Log in

Temperature effect on the structure and characteristics of ZnS-based quantum dots

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of zinc sulfide (ZnS) quantum dots (QDs) by microwave heating in a water-ethanol medium is proposed. The effect of the synthesis temperature (80 °C, 100 °C, 120 °C, and 150 °C) on the QD characteristics is examined. Based on the analysis of X-ray diffraction profiles the conclusion is drawn that the hexagonal ZnS phase of wurtzite type with an average nanocrystal size of 2.6-3.7 nm forms in the synthesized QDs. The nanocrystallite size is found to increase with the QD synthesis heating temperature. The analysis of X-ray absorption spectra (XANES) at the zinc K-edge indicates a higher crystallinity of the QD samples prepared at higher synthesis temperatures. The combined analysis of X-ray diffraction profiles, optical diffuse reflectance spectra, and X-ray absorption spectra implies the following possible QD structure: the pure hexagonal ZnS phase of wurtzite type in the bulk of nanoparticles and the amorphous ZnO phase in the surface layer of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Bruchez, M. Moronne, P. Gin, et al., Science, 281, 2013 (1998).

    Article  CAS  Google Scholar 

  2. W. C. W. Chan and S. M. Nie, Science, 281, 2016 (1998).

    Article  CAS  Google Scholar 

  3. Q. J. Sun, Y. A. Wang, L. S. Li, et al., Nat. Photonics, 1, 717 (2007).

    Article  CAS  Google Scholar 

  4. M. Green, Semiconductor Quantum Dots, Cambridge: RCS Publishing, UK (2013).

    Google Scholar 

  5. T. K. Tran, W. Park, W. Tong, et al., J. Appl. Phys., 81, 2803 (1997).

    Article  CAS  Google Scholar 

  6. H. Chen, D. Shi, J. Qi, et al., Phys. Lett. A, 373, 371 (2009).

    Article  CAS  Google Scholar 

  7. H. Zeng, X. Li, H. Zhao, et al., RSC Advances., 5, No. 33, 25717 (2015).

    Article  CAS  Google Scholar 

  8. A. Guleria, A. K. Singh, M. C. Rath, and S. Adhikari, Mater. Res. Express, 2, No. 4, 045006 (2015).

    Article  Google Scholar 

  9. Y. Xin, X. Yang, Z. Zhang, et al., Chem. Cat. Chem., 3, 1772 (2011).

    CAS  Google Scholar 

  10. H. R. Rajabi and M. Farsi, Mater. Sci. Semicond. Process., 48, 14 (2016).

    Article  CAS  Google Scholar 

  11. M. Tayebi, M. Tavakkoli Yaraki, M. Ahmadieh, et al., J. Electron. Mater., 45, No. 11, 5671 (2016).

    Article  CAS  Google Scholar 

  12. M. Liu, H. Zhao, S. Chen, et. al., Inorg. Chim. Acta, 392, 236 (2012).

    Article  CAS  Google Scholar 

  13. C. M. Gonzalez, W.-C. Wu, J. B. Tracy, and B. Martin, Chem. Commun., 51, No. 15, 3087 (2015).

    Article  CAS  Google Scholar 

  14. Y. Yu, L. Xu, J. Chen, et al., Colloids Surf. B, 95, 247 (2012).

    Article  CAS  Google Scholar 

  15. J. Zhang, Q. Chen, W. Zhang, et al., Appl. Surf. Sci., 351, 655 (2015).

    Article  CAS  Google Scholar 

  16. D. Zhu, W. Li, H.-M. Wen, et al., Anal. Methods, 6, No. 18, 7489 (2014).

    Article  CAS  Google Scholar 

  17. A. N. Kravtsova, I. A. Pankin, M. A. Soldatov, et al., J. Struct. Chem., 57, No. 7, 1422 (2016).

    Article  CAS  Google Scholar 

  18. A. N. Kravtsova, I. A. Pankin, A. P. Budnik, et al., J. Struct. Chem., 57, No. 5, 926 (2016).

    Article  CAS  Google Scholar 

  19. V. F. Markov, L. N. Maskaeva, and P. N. Ivanov, Hydrochemical Deposition of Metal Sulfide Films: Simulation and Experiment [in Russian], UrO RAN, Ekaterinburg (2006).

    Google Scholar 

  20. T. V. Vinogradova, V. F. Markov, and L. N. Maskaeva, Russ. J. Gen. Chem., 80, No. 11, 2341 (2010).

    Article  CAS  Google Scholar 

  21. J. Tauc, Mater. Res. Bull., 3, 37 (1968).

    Article  CAS  Google Scholar 

  22. P. Kubelka and F. Munk, Z. Technol. Phys., 12, 593 (1931).

    Google Scholar 

  23. Electronic resource, Access mode: http://nanospectr.sfedu.ru.

  24. I. S. Rodina, A. N. Kravtsova, A. V. Soldatov, et al., Opt. Spectrosc., 115, No. 6, 858 (2013).

    Article  CAS  Google Scholar 

  25. A. N. Kravtsova, A. A. Guda, A. V. Soldatov, et al., Opt. Spectrosc., 119, No. 6, 982 (2015).

    Article  CAS  Google Scholar 

  26. A. N. Kravtsova, A. A. Guda, J. Goettlicher, et al., J. Phys. Conf. Ser., 712, 012096 (2016).

    Article  Google Scholar 

  27. F. A. La Porta, J. Andres, M. S. Li, et al., Phys. Chem. Chem. Phys., 16, No. 37, 20127 (2014).

    Article  Google Scholar 

  28. G. Aminoff, Z. Kristallogr. Cryst. Mater., 58, No. 1, 203 (1923).

    CAS  Google Scholar 

  29. A. L. Patterson, Phys. Rev., 56, No. 10, 978 (1939).

    Article  CAS  Google Scholar 

  30. G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, Cambridge University Press, UK, Cambridge (2011).

    Google Scholar 

  31. M. A. Bryleva, A. N. Kravtsova, I. N. Shcherbakov, et al., J. Struct. Chem., 53, No. 2, 295 (2012).

    Article  CAS  Google Scholar 

  32. M. C. Feiters, G. A. Metselaar, B. B. Wentzel, et al., Ind. Eng. Res., 44, 8631 (2005).

    Article  CAS  Google Scholar 

  33. A. V. Soldatov, G. Smolentsev, A. Kravtsova, et al., Radiat. Phys. Chem., 75, 1866 (2006).

    Article  CAS  Google Scholar 

  34. A. N. Kravtsova, S. A. Suchkova, M. B. Fain, and A. V. Soldatov, J. Struct. Chem., 57, No. 3, 491 (2016).

    Article  CAS  Google Scholar 

  35. A. N. Kravtsova, K. A. Lomachenko, S. A. Suchkova, et al., Bull. Russ. Acad. Sci.: Phys., 79, No. 11, 1413 (2015).

    Article  CAS  Google Scholar 

  36. A. N. Kravtsova, A. V. Soldatov, S. A. Suchkova, et al., J. Struct. Chem., 56, No. 3, 517 (2015).

    Article  CAS  Google Scholar 

  37. Yu. Yu. Lurie, Handbook of Analytical Chemistry [in Russian], Khimiya, Moscow (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kravtsova.

Additional information

Original Russian Text © 2017 A. N. Kravtsova, A. P. Budnik, A. A. Tsaturyan, I. A. Pankin, A. L. Bugaev, A. V. Soldatov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravtsova, A.N., Budnik, A.P., Tsaturyan, A.A. et al. Temperature effect on the structure and characteristics of ZnS-based quantum dots. J Struct Chem 58, 1397–1402 (2017). https://doi.org/10.1134/S0022476617070174

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617070174

Keywords

Navigation