Skip to main content
Log in

Theoretical study of interactions between 1-alkyl-3-methyimidazolium tetrafluoroborate and dibenzothiophene: DFT, NBO, and AIM analysis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory is employed to study the interaction energies between dibenzothiophene (DBT) and 1-alkyl-3-methylimidazolium tetrafluoroborate ([C n mim]+[BF4]). The structures of DBT, 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim]+[BF4]), 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]+[BF4]−), 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim]+[BF4]), 1-octyl-3-methylimidazolium tetrafluoroborate ([C8mim]+[BF4]), [C2mim]+[BF4]–DBT, [C4mim]+[BF4]–DBT, [C6mim]+[BF4]–DBT and [C8mim]+[BF4]–DBT systems are optimized systematically at the B3LYP/6-31G(d,p) level, and the most stable geometries are obtained by NBO and AIM analyses. The results indicate that DBT and imidazolium rings of ionic liquids are parallel to each other. It is found that the [BF4] anion prefers to be located close to a C1–H9 proton ring in the vicinity of the imidazolium ring and the most stable gas-phase structure of [C n mim]+[BF4] has four hydrogen bonds between [C n mim]+ and [BF4]−. There are hydrogen bonding interactions, π–π and C–H–π interactions between [C8mim]+[BF4] and DBT, which is confirmed by NBO and AIM analyses. The calculated interaction energies for the studied ionic liquids can be used to interpret a better extracting ability of [C8mim]+[BF4] to remove DBT, due to stronger interactions between [C8mim]+[BF4] and DBT, in agreement with the experimental results of dibenzothiophene extraction by [C n mim]+[BF4].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zhang, Q. Zhang, and Z. C. Zhang, Ind. Eng. Chem. Res., 43, 614–622 (2003).

    Article  Google Scholar 

  2. J.-J. Gao, H.-Q. Li, H.-X. Zhang, et al., Ind. Eng. Chem. Res., 51, 4682–4691 (2012).

    Article  CAS  Google Scholar 

  3. L. Alonso, A. Arce, M. Francisco, et al., Fluid Phase Equilib., 270, 97–102 (2008).

    Article  CAS  Google Scholar 

  4. A. Stanislaus, A. Marafi, and M. S. Rana, Catal. Today, 153, 1–68 (2010).

    Article  CAS  Google Scholar 

  5. R. Anantharaj and T. Banerjee, Fluid Phase Equilib., 293, 22–31 (2010).

    Article  CAS  Google Scholar 

  6. B. Rodríguez-Cabo, A. Soto, and A. Arce, J. Chem. Thermodyn., 57, 248–255 (2013).

    Article  Google Scholar 

  7. A. Akbari, M. Omidkhah, and J. T. Darian, Ultrason. Sonochem., 21, 692–705 (2014).

    Article  CAS  Google Scholar 

  8. Y. Nie, C. Li, H. Meng, et al., Fuel Process. Technol., 89, 978–983 (2008).

    Article  CAS  Google Scholar 

  9. L. Alonso, A. Arce, M. Francisco, et al., Fluid Phase Equilib., 270, 97–102 (2008).

    Article  CAS  Google Scholar 

  10. J. Zhou, J. Mao, and S. Zhang, Fuel Process. Technol., 89, 1456–1460 (2008).

    Article  CAS  Google Scholar 

  11. S. Velu, X. Ma, and C. Song, Ind. Eng. Chem. Res., 42, 5293–5304 (2003).

    Article  CAS  Google Scholar 

  12. H. Li, L. He, J. Lu, et al., Energy Fuels, 23, 1354–1357 (2009).

    Article  CAS  Google Scholar 

  13. G. Vakili-Nezhaad, M. Vatani, M. Asghari, et al., J. Chem. Thermodyn., 54, 148–154 (2012).

    Article  CAS  Google Scholar 

  14. M. B. Vraneš, S. Dožic, V. Djeric, et al., J. Chem. Eng. Data, 58, 1092–1102 (2013).

    Article  Google Scholar 

  15. H. Shekaari, A. Bezaatpour, and R. Elhami-Kalvanagh, J. Chem. Eng. Data, 57, 345–351 (2012).

    Article  CAS  Google Scholar 

  16. V. Chandra Srivastava, RSC Advances, 2, 759–783 (2012).

    Article  CAS  Google Scholar 

  17. R. Lü, Z. Qu, and J. Lin, J. Mol. Liq., 180, 207–214 (2013).

    Article  Google Scholar 

  18. R. Lü, J. Lin, and Z. Qu, Comput. Theor. Chem., 1002, 49–58 (2012).

    Article  Google Scholar 

  19. K. Kędra-Krolik, F. Mutelet, J.-C. Moïe, et al., Energy Fuels, 25, 1559–1565 (2011).

    Article  Google Scholar 

  20. L. Alonso, A. Arce, M. Francisco, et al., J. Chem. Thermodyn., 40, 966–972 (2008).

    Article  CAS  Google Scholar 

  21. M. Francisco, A. Arce, and A. Soto, Fluid Phase Equilib., 294, 39–48 (2010).

    Article  CAS  Google Scholar 

  22. A.-L. Revelli, F. Mutelet, and J.-N. L. Jaubert, J. Phys. Chem. B, 114, 4600–4608 (2010).

    Article  CAS  Google Scholar 

  23. S. Potdar, R. Anantharaj, and T. Banerjee, J. Chem. Eng. Data, 57, 1026–1035 (2012).

    Article  CAS  Google Scholar 

  24. K. Ke¸ dra-Królik, M. Fabrice, and J.-N. L. Jaubert, Ind. Eng. Chem. Res., 50, 2296–2306 (2011).

    Article  Google Scholar 

  25. R. Anantharaj and T. Banerjee, J. Chem. Eng. Data, 56, 2770–2785 (2011).

    Article  CAS  Google Scholar 

  26. M. L. S. Batista, L. I. N. Tomé, C. M. S. S. Neves, et al., J. Phys. Chem. B, 116, 5985–5992 (2012).

    Article  CAS  Google Scholar 

  27. X. Liu, G. Zhou, X. Zhang, et al., AIChE J., 56, 2983–2996 (2010).

    Article  CAS  Google Scholar 

  28. D. Xu, W. Zhu, H. Li, et al., Energy Fuels, 23, 5929–5933 (2009).

    Article  CAS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh PA (2003).

    Google Scholar 

  30. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  31. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  32. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899–926 (1988).

    Article  CAS  Google Scholar 

  33. E. D. Glendening, A. E. Reed, J. E. Carpenter, et al., NBO Version 3.1.

  34. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, UK (1990).

    Google Scholar 

  35. F. W. Biegler Konig, J. Schonbohm, and D. Bayles, J. Comput. Chem., 22, 545–559 (2001).

    Article  Google Scholar 

  36. R. Lü, Z. Qu, H. Yu, et al., Comput. Theor. Chem., 988, 86–91 (2012).

    Article  Google Scholar 

  37. C. D. Wilfred, C. F. Kiat, Z. Man, et al., Fuel Process. Technol., 93, 85–89 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vatanparast.

Additional information

Original Russian Text © 2017 I. V. Krauklis, A. V. Tulub, A. A. Shtyrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niknam, M., Vatanparast, M. & Shekaari, H. Theoretical study of interactions between 1-alkyl-3-methyimidazolium tetrafluoroborate and dibenzothiophene: DFT, NBO, and AIM analysis. J Struct Chem 58, 1296–1306 (2017). https://doi.org/10.1134/S0022476617070058

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617070058

Keywords

Navigation