Skip to main content
Log in

Effect of Dietary Phospholipid on the Behavior in C57BL/6J Mice

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Nowadays phospholipids are widely used as hepatoprotective, neuroprotective and anti-stress drugs, as well as the dietary supplements. Besides, lecithin consisting up to 70% of the phospholipids mixture: phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidic acid, is the often component of food production as an emulsifier. Dose of these biologically active substances in the modern human diet could be quite high. Previously we have shown that chronic intestinal inflammation in Muc2-knockout mice induces behavioral changes along with the significant increase in the content of phospholipids in intestinal epithelial cells, particularly, phosphatidylcholine, phosphatidylserine and phosphatidic acid. Here we investigate the effects of long-term administration of a mixture of these phospholipids, as well as the effects of long-term administration of soy lecithin on the behavioral patterns in laboratory mice. Animals long-term taken a phospholipid mixture shows no normally observed preference towards females in the two intruders test (with female and male). In the social odor preference test, they also did not distinguish female and male odors, while non-social odors discrimination preserved. In addition, we identified a decrease in anxiety, obsessive traits, and schizophrenia-like behavior traits in these animals. Soy lecithin supplementation had similar effects on social behavior and compulsive traits, and increased aggression in males. Thus, long-term perinatal administration of either mixture of phospholipids (phosphatidylcholine, phosphatidylserine and phosphatidic acid) or soy lecithin can influence various aspects of behavior in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Maggini S, Pierre A, Calder PC (2018) Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients 10(10): 1531.https://doi.org/10.3390/nu10101531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao M, Tuo H, Wang S, Zhao L (2020) The Effects of Dietary Nutrition on Sleep and Sleep Disorders. Mediat Inflamm 2020: 3142874.https://doi.org/10.1155/2020/3142874

    Article  CAS  Google Scholar 

  3. Adamovich Y, Aviram R, Asher G (2015) The emerging roles of lipids in circadian control. Biochim Biophys Acta 1851(8): 1017–1025.https://doi.org/10.1016/j.bbalip.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  4. Ko CW, Qu J, Black DD, Tso P (2020) Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 17(3): 169–183.https://doi.org/10.1038/s41575-019-0250-7

    Article  CAS  PubMed  Google Scholar 

  5. Shi J, Fan J, Su Q, Yang Z (2019) Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne) 10: 703.https://doi.org/10.3389/fendo.2019.00703

  6. Hachem M, Ahmmed MK, Nacir-Delord H (2023) Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol.https://doi.org/10.1007/s12035-023-03793-y

  7. Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z (2022) Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci 14: 975176.https://doi.org/10.3389/fnagi.2022.975176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1): 31–39.https://doi.org/10.1038/35036052

    Article  CAS  PubMed  Google Scholar 

  9. Chakraborty M, Jiang XC (2013) Sphingomyelin and its role in cellular signaling. Adv Exp Med Biol 991: 1–14.https://doi.org/10.1007/978-94-007-6331-9_1

    Article  CAS  PubMed  Google Scholar 

  10. Ruysschaert JM, Lonez C (2015) Role of lipid microdomains in TLR-mediated signalling. Biochim Biophys Acta 1848(9): 1860–1867.https://doi.org/10.1016/j.bbamem.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  11. Estes RE, Lin B, Khera A, Davis MY (2021) Lipid Metabolism Influence on Neurodegenerative Disease Progression: Is the Vehicle as Important as the Cargo? Front Mol Neurosci 14: 788695.https://doi.org/10.3389/fnmol.2021.788695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hamilton LK, Fernandes KJL (2018) Neural stem cells and adult brain fatty acid metabolism: Lessons from the 3xTg model of Alzheimer’s disease. Biol Cell 110(1): 6–25.https://doi.org/10.1111/boc.201700037

    Article  CAS  PubMed  Google Scholar 

  13. Tamura Y, Yamato M, Kataoka Y (2022) Animal Models for Neuroinflammation and Potential Treatment Methods. Front Neurol 13: 890217.https://doi.org/10.3389/fneur.2022.890217

    Article  PubMed  PubMed Central  Google Scholar 

  14. Falabella M, Vernon HJ, Hanna MG, Claypool SM, Pitceathly RDS (2021) Cardiolipin, Mitochondria, and Neurological Disease. Trends Endocrinol Metab 32(4): 224–237.https://doi.org/10.1016/j.tem.2021.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aufschnaiter A, Kohler V, Diessl J, Peselj C, Carmona-Gutierrez D, Keller W, Buttner S (2017) Mitochondrial lipids in neurodegeneration. Cell Tissue Res 367(1): 125–140.https://doi.org/10.1007/s00441-016-2463-1

    Article  CAS  PubMed  Google Scholar 

  16. Boldyreva LV, Morozova MV, Saydakova SS, Kozhevnikova EN (2021) Fat of the Gut: Epithelial Phospholipids in Inflammatory Bowel Diseases. Int J Mol Sci 22(21): 11682.https://doi.org/10.3390/ijms222111682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petan T, Mancek-Keber M (2022) Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radic Biol Med 188: 351–362.https://doi.org/10.1016/j.freeradbiomed.2022.06.228

    Article  CAS  PubMed  Google Scholar 

  18. Borisova MA, Snytnikova OA, Litvinova EA, Achasova KM, Babochkina TI, Pindyurin AV, Tsentalovich YP, Kozhevnikova EN (2020) Fucose Ameliorates Tryptophan Metabolism and Behavioral Abnormalities in a Mouse Model of Chronic Colitis. Nutrients 12(2): 445.https://doi.org/10.3390/nu12020445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morozova MV, Borisova MA, Snytnikova OA, Achasova KM, Litvinova EA, Tsentalovich YP, Kozhevnikova EN (2022) Colitis-associated intestinal microbiota regulates brain glycine and host behavior in mice. Sci Rep 12(1): 16345.https://doi.org/10.1038/s41598-022-19219-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Borisova MA, Achasova KM, Morozova KN, Andreyeva EN, Litvinova EA, Ogienko AA, Morozova MV, Berkaeva MB, Kiseleva E, Kozhevnikova EN (2020) Mucin-2 knockout is a model of intercellular junction defects, mitochondrial damage and ATP depletion in the intestinal epithelium. Sci Rep 10(1): 21135.https://doi.org/10.1038/s41598-020-78141-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Roy R, Paul R, Bhattacharya P, Borah A (2023) Combating Dopaminergic Neurodegeneration in Parkinson’s Disease through Nanovesicle Technology. ACS Chem Neurosci 14(16): 2830–2848.https://doi.org/10.1021/acschemneuro.3c00070

    Article  CAS  PubMed  Google Scholar 

  22. Graham DB, Xavier RJ (2020) Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578(7796): 527–539.https://doi.org/10.1038/s41586-020-2025-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Geyer MA, Dulawa SC (2003) Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci Chapter 8(8): 17.https://doi.org/10.1002/0471142301.ns0817s24

    Article  Google Scholar 

  24. Cadenhead KS, Geyer MA, Braff DL (1993) Impaired startle prepulse inhibition and habituation in patients with schizotypal personality disorder. Am J Psychiatry 150(12): 1862–1867.https://doi.org/10.1176/ajp.150.12.1862

    Article  CAS  PubMed  Google Scholar 

  25. Wolff AR, Bilkey DK (2010) The maternal immune activation (MIA) model of schizophrenia produces pre-pulse inhibition (PPI) deficits in both juvenile and adult rats but these effects are not associated with maternal weight loss. Behav Brain Res 213(2): 323–327.https://doi.org/10.1016/j.bbr.2010.05.008

    Article  PubMed  Google Scholar 

  26. Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47(2): 181–188.https://doi.org/10.1001/archpsyc.1990.01810140081011

    Article  CAS  PubMed  Google Scholar 

  27. Belousova II, Gladkich DV, Ghelezova AI, Stephanova NA, Kolosova NG, Amstislavskaya TG (2009) Age Aspeccts of Neurohormonal and Neurochemical Regulation of Sexual Behavior in Male Rats. Russ J Physiol 95(11): 1258–1267. (In Russ).

    CAS  Google Scholar 

  28. Michalikova S, van Rensburg R, Chazot PL, Ennaceur A (2010) Anxiety responses in Balb/c, c57 and CD-1 mice exposed to a novel open space test. Behav Brain Res 207(2): 402–417.https://doi.org/10.1016/j.bbr.2009.10.028

    Article  CAS  PubMed  Google Scholar 

  29. Novikov SN (1988) Pheromones and reproduction in mammals. Nauka (LO). (In Russ).

    Google Scholar 

  30. Amstislavskaya TG, Bulygina VV, Tikhonova MA, Maslova LN (2013) Social isolation during peri-adolescence or adulthood: effects on sexual motivation, testosterone and corticosterone response under conditions of sexual arousal in male rats. Chin J Physiol 56(1): 36–43.https://doi.org/10.4077/CJP.2013.BAA074

    Article  PubMed  Google Scholar 

  31. Zolotykh MA, Kozhevnikova EN (2017) The effect of social experience on olfactory preference in male mice. Appl Animal Behav Sci 189: 85–90.https://doi.org/10.1016/j.applanim.2017.01.013

    Article  Google Scholar 

  32. Joel D (2006) Current animal models of obsessive compulsive disorder: a critical review. Prog Neuropsychopharmacol Biol Psychiatry 30(3): 374–388.https://doi.org/10.1016/j.pnpbp.2005.11.006

    Article  PubMed  Google Scholar 

  33. Takahashi H, Komatsu S, Nakahachi T, Ogino K, Kamio Y (2016) Relationship of the Acoustic Startle Response and Its Modulation to Emotional and Behavioral Problems in Typical Development Children and Those with Autism Spectrum Disorders. J Autism Dev Disord 46(2): 534–543.https://doi.org/10.1007/s10803-015-2593-4

    Article  PubMed  Google Scholar 

  34. Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF (2021) Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 12(4): 1239–1285.https://doi.org/10.1093/advances/nmaa181

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hamamah S, Amin A, Al-Kassir AL, Chuang J, Covasa M (2023) Dietary Fat Modulation of Gut Microbiota and Impact on Regulatory Pathways Controlling Food Intake. Nutrients 15(15): 3365.https://doi.org/10.3390/nu15153365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Agagunduz D, Icer MA, Yesildemir O, Kocak T, Kocyigit E, Capasso R (2023) The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 21(1): 240.https://doi.org/10.1186/s12967-023-04088-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pifferi F, Laurent B, Plourde M (2021) Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Front Physiol 12: 645646.https://doi.org/10.3389/fphys.2021.645646

    Article  PubMed  PubMed Central  Google Scholar 

  38. Santos AL, Preta G (2018) Lipids in the cell: organisation regulates function. Cell Mol Life Sci 75(11): 1909–1927.https://doi.org/10.1007/s00018-018-2765-4

    Article  CAS  PubMed  Google Scholar 

  39. Lowry TW, Kusi-Appiah AE, Fadool DA, Lenhert S (2023) Odor Discrimination by Lipid Membranes. Membranes (Basel) 13(2): 151.https://doi.org/10.3390/membranes13020151

  40. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL (2017) The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr 1859(9 Pt B): 1558–1572.https://doi.org/10.1016/j.bbamem.2017.04.006

    Article  CAS  PubMed  Google Scholar 

  41. Dennis EA (2015) Introduction to Thematic Review Series: Phospholipases: Central Role in Lipid Signaling and Disease. J Lipid Res 56(7): 1245–1247.https://doi.org/10.1194/jlr.E061101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnson AA, Stolzing A (2019) The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 18(6): e13048.https://doi.org/10.1111/acel.13048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Farooqui AA, Horrocks LA (2005) Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod Nutr Dev 45(5): 613–631.https://doi.org/10.1051/rnd:2005049

    Article  CAS  PubMed  Google Scholar 

  44. Nelson RK, Frohman MA (2015) Physiological and pathophysiological roles for phospholipase D. J Lipid Res 56(12): 2229–2237.https://doi.org/10.1194/jlr.R059220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salvi F, Gadda G (2013) Human choline dehydrogenase: medical promises and biochemical challenges. Arch Biochem Biophys 537(2): 243–252.https://doi.org/10.1016/j.abb.2013.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39: 407–427.https://doi.org/10.1146/annurev.biophys.093008.131234

    Article  CAS  PubMed  Google Scholar 

  47. Das P, Estephan R, Banerjee P (2003) Apoptosis is associated with an inhibition of aminophospholipid translocase (APTL) in CNS-derived HN2-5 and HOG cells and phosphatidylserine is a recognition molecule in microglial uptake of the apoptotic HN2-5 cells. Life Sci 72(23): 2617–2627.https://doi.org/10.1016/s0024-3205(03)00163-2

    Article  CAS  PubMed  Google Scholar 

  48. Kay JG, Fairn GD (2019) Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun Signal 17(1): 126.https://doi.org/10.1186/s12964-019-0438-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lenoir G, D’Ambrosio JM, Dieudonne T, Copic A (2021) Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Front Cell Dev Biol 9: 737907.https://doi.org/10.3389/fcell.2021.737907

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kim HY, Akbar M, Kim YS (2010) Phosphatidylserine-dependent neuroprotective signaling promoted by docosahexaenoic acid. Prostagland Leukot Essent Fatty Acids 82(4-6): 165–172.https://doi.org/10.1016/j.plefa.2010.02.025

    Article  CAS  Google Scholar 

  51. More MI, Freitas U, Rutenberg D (2014) Positive effects of soy lecithin-derived phosphatidylserine plus phosphatidic acid on memory, cognition, daily functioning, and mood in elderly patients with Alzheimer’s disease and dementia. Adv Ther 31(12): 1247–1262.https://doi.org/10.1007/s12325-014-0165-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bond P (2017) Phosphatidic acid: biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals. Nutr Metab (Lond) 14: 12.https://doi.org/10.1186/s12986-017-0166-6

  53. Zegarlinska J, Piascik M, Sikorski AF, Czogalla A (2018) Phosphatidic acid—a simple phospholipid with multiple faces. Acta Biochim Pol 65(2): 163–171.https://doi.org/10.18388/abp.2018_2592

    Article  CAS  PubMed  Google Scholar 

  54. Pages C, Simon MF, Valet P, Saulnier-Blache JS (2001) Lysophosphatidic acid synthesis and release. Prostagland Other Lipid Mediat 64(1–4): 1–10.https://doi.org/10.1016/s0090-6980(01)00110-1

    Article  CAS  Google Scholar 

  55. Moolenaar WH (1995) Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem 270(22): 12949–12952.https://doi.org/10.1074/jbc.270.22.12949

    Article  CAS  PubMed  Google Scholar 

  56. Hines OJ, Ryder N, Chu J, McFadden D (2000) Lysophosphatidic acid stimulates intestinal restitution via cytoskeletal activation and remodeling. J Surg Res 92(1): 23–28.https://doi.org/10.1006/jsre.2000.5941

    Article  CAS  PubMed  Google Scholar 

  57. Jedrzejewska-Szmek J, Dorman DB, Blackwell KT (2023) Making time and space for calcium control of neuron activity. Curr Opin Neurobiol 83: 102804.https://doi.org/10.1016/j.conb.2023.102804

    Article  CAS  PubMed  Google Scholar 

  58. Parato J, Bartolini F (2021) The microtubule cytoskeleton at the synapse. Neurosci Lett 753: 135850.https://doi.org/10.1016/j.neulet.2021.135850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rojas-Charry L, Nardi L, Methner A, Schmeisser MJ (2021) Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders. J Mol Med (Berl) 99(2): 161–178.https://doi.org/10.1007/s00109-020-02018-2

  60. Pozo Devoto VM, Onyango IG, Stokin GB (2022) Mitochondrial behavior when things go wrong in the axon. Front Cell Neurosci 16: 959598.https://doi.org/10.3389/fncel.2022.959598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Licht-Mayer S, Campbell GR, Canizares M, Mehta AR, Gane AB, McGill K, Ghosh A, Fullerton A, Menezes N, Dean J, Dunham J, Al-Azki S, Pryce G, Zandee S, Zhao C, Kipp M, Smith KJ, Baker D, Altmann D, Anderton SM, Kap YS, Laman JD, Hart BA, Rodriguez M, Watzlawick R, Schwab JM, Carter R, Morton N, Zagnoni M, Franklin RJM, Mitchell R, Fleetwood-Walker S, Lyons DA, Chandran S, Lassmann H, Trapp BD, Mahad DJ (2020) Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathol 140(2): 143–167.https://doi.org/10.1007/s00401-020-02179-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khan MM, Paez HG, Pitzer CR, Alway SE (2023) The Therapeutic Potential of Mitochondria Transplantation Therapy in Neurodegenerative and Neurovascular Disorders. Curr Neuropharmacol 21(5): 1100–1116.https://doi.org/10.2174/1570159X05666220908100545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saydakova S, Morozova K, Snytnikova O, Morozova M, Boldyreva L, Kiseleva E, Tsentalovich Y, Kozhevnikova E (2023) The Effect of Dietary Phospholipids on the Ultrastructure and Function of Intestinal Epithelial Cells. Int J Mol Sci 24(2): 1788.https://doi.org/10.3390/ijms24021788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mayr JA (2015) Lipid metabolism in mitochondrial membranes. J Inherit Metab Dis 38(1): 137–144.https://doi.org/10.1007/s10545-014-9748-x

    Article  CAS  PubMed  Google Scholar 

  65. Funai K, Summers SA, Rutter J (2020) Reign in the membrane: How common lipids govern mitochondrial function. Curr Opin Cell Biol 63: 162–173.https://doi.org/10.1016/j.ceb.2020.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bathina S, Das UN (2023) Role of Mitochondrial Dysfunction in Cellular Lipid Homeostasis and Disease. Discov Med 35(178): 653–663.https://doi.org/10.24976/Discov.Med.202335178.64

    Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by RSF no. 23-25-00417 (https://rscf.ru/project/23-25-00417/). No additional grants were received to conduct or supervise this particular study.

Author information

Authors and Affiliations

Authors

Contributions

Idea of work and planning the experiment (E.N.K., L.V.B., M.V.M.), data collection (M.V.M., L.V.B., K.S.P., E.N.K.), data processing (M.V.M., K.S.P., E.N.K.), manuscript writing and editing (L.V.B., E.N.K.).

Corresponding author

Correspondence to E. N. Kozhevnikova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Experiments with animals were conducted in accordance with international guidelines for biomedical research and were approved by the Local Ethical Committee of the Scientific Research Institute of Neurosciences and Medicine (protocol no. 5 of February 16, 2023).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldyreva, L.V., Morozova, M.V., Pavlov, K.S. et al. Effect of Dietary Phospholipid on the Behavior in C57BL/6J Mice. J Evol Biochem Phys 60, 409–419 (2024). https://doi.org/10.1134/S0022093024010319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093024010319

Keywords:

Navigation