Skip to main content
Log in

γM Crystallin Genes in the Eye Lens of a Juvenile Common Carp Cyprinus carpio: Transcription Levels and Phylogenetic Aspect

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The study was focused on determining transcription levels of γM-crystallin genes in the eye lens of a common carp Cyprinus carpio. The transcription was detected by quantitative RT-PCR, and its relative level was quantified in 5 genes of γM-crystallins and crystallin-like proteins in C. carpio aged 4, 10 and 14 months. In all age groups, the specificity of GCM1, GCM1L, GCM2L, GCM2L3 gene expression in the lenses was found. GCM2 gene expression, apart from the lenses, was also detected in the muscles, liver and brain. Analysis of the role of the amino acid sequence of the identified γM-crystallins in the formation of the refractive properties of the lens was performed based on the assessment of calculated refractive index increments. It is assumed that high values of the refractive index of the lens in C. carpio are due not so much to a relative content of amino acids in γM-crystallins as to their sequences, which ensure the tertiary packing density of these proteins, as well as by γM-crystallin concentrations. To identify conserved domains and evolutionary relationships between γM-crystallins in fish of different taxa, a multiple alignment of amino acid sequences was performed, and a phylogenetic tree was constructed using the neighbor-joining clustering method. The high level of homology, the presence of 26 conserved regions, and the phylogenetic proximity of the compared lens crystallins in the clade Teleostomi may indicate an evolutionary consolidation of the spatial structure of these proteins and their important role in the adaptation of the fish eye’s optical apparatus to vision in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Land MF, Nilsson D-E (2012) Animal Eyes. Oxford University Press, Oxford. 288 p. ISBN-13: 9780199581139. https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199581139.001.0001/acprof-9780199581139

    Google Scholar 

  2. Kröger RHH (2013) Optical plasticity in fish lenses. Prog Retin Eye Res 34: 78–88. https://doi.org/10.1016/j.preteyeres.2012.12.001

    Article  PubMed  Google Scholar 

  3. Pierscionek BK (2009) Gradient index of refraction (GRIN) profiling of the eye lens. In: Bass M (Ed) The Optical Society of America Handbook of Optics. Volume III: Vision and Vision Optics. McGraw-Hill, New York, 19.1–19.18. ISBN: 9780071498913

    Google Scholar 

  4. Pierscionek BK, Regini JW (2012) The gradient index lens of the eye: an opto-biological synchrony. Prog Retin Eye Res 31(4): 332–349. https://doi.org/10.1016/j.preteyeres.2012.03.001

    Article  PubMed  Google Scholar 

  5. Lin Y-R, Mok H-K, Wu Y-H, Liang S-S, Hsiao C-C, Huang C-H, Chiou S-H (2013) Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish. Mol Vis 19: 623–637. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611949/

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Posner M, Hawke M, LaCava C, Prince CJ, Bellanco NR, Corbin RW (2008) A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression. Mol Vis 14: 806–814. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2358921/

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Greiling TM, Houck SA, Clark JI (2009) The zebrafish lens proteome during development and aging. Mol Vis 15: 2313–2325. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779061/

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiss AJ, Cheng CH (2008) Molecular diversity and genomic organisation of the alpha, beta and gamma eye lens crystallins from the Antarctic toothfish Dissostichus mawsoni. Comp Biochem Physiol Part D Genomics and Proteomics 3(2): 155–171. https://doi.org/10.1016/j.cbd.2008.02.002

    Article  CAS  Google Scholar 

  9. Chiou SH, Chang WC, Pan FM, Chang T, Lo TB (1987) Physicochemical characterization of lens crystallins from the carp and biochemical comparison with other vertebrate and invertebrate crystallins. J. Biochem. 101(3): 751–759. https://doi.org/10.1093/jb/101.3.751

    Article  CAS  Google Scholar 

  10. Zhao H, Chen Y, Rezabkova L, Wu Z, Wistow G, Schuck P (2014) Solution properties of γ-crystallins: hydration of fish and mammal γ-crystallins. Protein Science 23(1): 88–99. https://doi.org/10.1002/pro.2394

    Article  CAS  PubMed  Google Scholar 

  11. Pan FM, Chang WC, Lin CH, Hsu AL, Chiou SH (1995) Characterization of gamma-crystallin from a catfish: structural characterization of one major isoform with high methionine by cDNA sequencing. Biochem Mol Biol Int 35(4): 725–732. https://pubmed.ncbi.nlm.nih.gov/7627123/

    CAS  PubMed  Google Scholar 

  12. Mahler B, Chen Y, Ford J, Thiel C, Wistow G, Wu Z (2013) Structure and dynamics of the fish eye lens protein, γM7-crystallin. Biochemistry 52(20): 3579–3587. https://pubs.acs.org/doi/abs/10.1021/bi400151c

    Article  CAS  Google Scholar 

  13. Zhao H, Brown PH, Magone MT, Schuck P (2011) The molecular refractive function of lens γ-crystallins. J Mol Biol 411(3): 680–699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146585/

    Article  CAS  Google Scholar 

  14. OligoArchitectTM Online. Glossary of Parameters.https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/200/845/oligo-architect-glossary-br3011en-mk.pdf. (Date of address: 05.05.2022)

  15. Kolder ICRM, van der Plas-Duivesteijn J, Tan G, Wiegertjes GF, Forlenza M, Guler AT, Travin DY, Nakao M, Moritomo T, Irnazarow I, den Dunnen JT, Anvar SY, Jansen H, Dirks RP, Palmblad M, Lenhard B, Henkel CV, Spaink HP (2016) A full-body transcriptome and proteome resource for the European common carp. BMC Genomics 17: 701. https://doi.org/10.1186/s12864-016-3038-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Filby AL, Tyler CR (2007) Appropriate ‘housekeeping’ genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol Biol 8: 10. https://doi.org/10.1186/1471-2199-8-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu W, Yuan X, Yuan S, Dai L, Dong S, Liu J, Peng L, Wang M, Tang Y, Xiao Y (2020) Optimal reference genes for gene expression analysis in polyploid of Cyprinus carpio and Carassius auratus. BMC Genet 21: 107. https://doi.org/10.1186/s12863-020-00915-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7: 85. https://doi.org/10.1186/1471-2105-7-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. NCBI//URL: https://www.ncbi.nlm.nih.gov/protein (Date of address: 09.02.2022).

  20. Okonechnikov K, Golosova O, Fursov M, UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8): 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  21. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9): 1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao H, Brown PH, Schuck P (2011) On the distribution of protein refractive index increments. Biophys J 100(9): 2309–2317. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149238/

    Article  CAS  Google Scholar 

  23. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM (Ed) The proteomics protocols handbook. Humana Press Inc, Totowa, New Jersey 571–607. https://doi.org/10.1385/1-59259-890-0:571

    Chapter  Google Scholar 

  24. Gerhard GS, Kauffman EJ, Wang X, Stewart R, Moore JL, Kasales CJ, Demidenko E, Cheng KC (2002) Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Experimental Gerontology 37(8–9): 1055–1068. https://doi.org/10.1016/S0531-5565(02)00088-8

    Article  PubMed  Google Scholar 

  25. Carey JB, Judge DS (2000) Longevity Records: Monographs on Population Aging. Vol 8: Life Spans of Mammals, Birds, Amphibians, Reptiles, and Fish. University Press of Southern Denmark. 241 p. ISBN-13: ‎978-8778385390

    Google Scholar 

  26. Brooks CM, Andrews AH, Ashford JR, Ramanna N, Jones CD, Lundstrom CC, Cailliet GM (2011) Age estimation and lead–radium dating of Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea. Polar Biol 34(3): 329–338. https://doi.org/10.1007/s00300-010-0883-z

    Article  Google Scholar 

  27. Wages P, Horwitz J, Ding L, Corbin RW, Posner M (2013) Changes in zebrafish (Danio rerio) lens crystallin content during development. Mol Vis 19: 408–417. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580975/

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang K, Vorontsova I, Hoshino M, Uesugi K, Yagi N, Hall JE, Schilling TF, Pierscionek BK (2020) Optical development in the zebrafish eye lens. FASEB J 34(4): 5552–5562. https://doi.org/10.1096/fj.201902607R

    Article  CAS  PubMed  Google Scholar 

  29. Keenan J, Manning G, Elia G, Dunn MJ, Orr DF, Pierscionek BK (2012) Crystallin distribution patterns in Litoria infrafrenata and Phyllomedusa sauvagei lenses. Proteomics 12(11): 1830–1843. https://doi.org/10.1002/pmic.201100393

    Article  CAS  PubMed  Google Scholar 

  30. Axelrod D, Lerner D, Sands PJ (1988) Refractive index within the lens of a goldfish eye determined from the paths of thin laser beams. Vision Res 28(1): 57–65. https://doi.org/10.1016/S0042-6989(88)80006-3

    Article  CAS  PubMed  Google Scholar 

  31. Campbell MC (1984) Measurement of refractive index in an intact crystalline lens. Vision Res 24(5): 409–415. https://doi.org/10.1016/0042-6989(84)90039-7

    Article  CAS  PubMed  Google Scholar 

  32. Van Leen RW, Breuer ML, Lubsen NH, Schoenmakers JG (1987) Developmental expression of crystallin genes: in situ hybridization reveals a differential localization of specific mRNAs. Dev Biol 123(2): 338–345. https://doi.org/10.1016/0012-1606(87)90392-7

    Article  CAS  PubMed  Google Scholar 

  33. Ueda Y, Duncan MK, David L (2002) Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age. Invest Ophthalmol Vis Sci 43(1): 205–215. https://iovs.arvojournals.org/article.aspx?articleid=2123357

    PubMed  Google Scholar 

  34. Pierscionek B, Bahrami M, Hoshino M, Uesugi K, Regini J, Yagi N (2015) The eye lens: age-related trends and individual variations in refractive index and shape parameters. Oncotarget 6(31): 30532–30544. https://www.oncotarget.com/article/5762/text/

    Article  Google Scholar 

  35. Vendra VP, Khan I, Chandani S, Muniyandi A, Balasubramanian D (2016) Gamma crystallins of the human eye lens. Biochim Biophys Acta 1860(1 Pt B): 333–343. https://doi.org/10.1016/j.bbagen.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  36. Slingsby C, Wistow GJ, Clark AR (2013) Evolution of crystallins for a role in the vertebrate eye lens. Protein Sci 22(4): 367–380. https://doi.org/10.1002/pro.2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Houston P, Macro N, Kang M, Chen L, Yang J, Wang L, Wu Z, Zhong D (2020) Ultrafast Dynamics of Water-Protein Coupled Motions around the Surface of Eye Crystallin. J Am Chem Soc 142(8): 3997–4007. https://doi.org/10.1021/jacs.9b13506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiss AJ, Mirarefi AY, Ramakrishnan S, Zukoski CF, Devries AL, Cheng CH (2004) Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman. J Exp Biol 207(Pt 26): 4633–4649. https://doi.org/10.1242/jeb.01312

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors are grateful to P.P. Zhdanov, the director of the Educational and Experimental Fishery of the Kaliningrad State Technical University, for the granted opportunity to collect biological material.

Funding

This work was funded by the Immanuel Kant Baltic Federal University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (V.V.Zh., I.N.D.), data collection (A.I.K., I.N.D.), data processing (I.N.D., A.I.K.), manuscript writing and editing (A.I.K., I.N.D., V.V.Zh.).

Corresponding author

Correspondence to V. V. Zhukov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither apparent nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 4, pp. 333–346https://doi.org/10.31857/S0044452922040052.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapitunova, A.I., Dominova, I.N. & Zhukov, V.V. γM Crystallin Genes in the Eye Lens of a Juvenile Common Carp Cyprinus carpio: Transcription Levels and Phylogenetic Aspect. J Evol Biochem Phys 58, 1025–1040 (2022). https://doi.org/10.1134/S0022093022040081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022040081

Keywords:

Navigation