Skip to main content
Log in

Simulation of Rheological Properties of Polyethylene Melts under Uniaxial Tension

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract—

The modified Vinogradov–Pokrovskii rheological model is used to describe the occurrence of stresses in a polymer melt under uniaxial tension. One of the changes introduced in the model concerns the anisotropic law of internal friction, which made it possible to take into account the nonmonotonic dependence of stationary tensile viscosity on tension rate. Another change is associated with the multimode nature of the relaxation processes accompanied the deformation of the polymer melt. The modification of the model made it possible to evaluate the tensile viscosity, which is three times higher than the shear viscosity of the melt in the linear deformation mode. The results of calculations for five industrial samples of polyethylene with a branched structure of macromolecules are compared with experimental data taken from the literature. The calculations according to the mathematical model are carried out by the Runge–Kutta method. The components of the relaxation spectrum are similar to those used in the experiment. Other parameters of the model are selected from the condition of the best coincidence between theoretical and experimental time dependences of tensile viscosity. Despite the fact that the multimode model is based on the development of theoretical concepts of the dynamics of linear polymer chains, it describes rather accurately the nonstationary time dependences of the viscosity of branched polymer melts under uniaxial tension. Comparison with the results of calculations using other models shows that proposed model provides prediction accuracy no worse than most modern models (for example, the Leonov–Prokunin model, Giesekus multimode model, the pom-pom model, the extended pom-pom model, and the model of molecular stress function) and significantly better results in relation to its single-mode approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics, Oxford: Clarendon, 1988.

    Google Scholar 

  2. McLeish, T.C.B., Molecular rheology of H-polymers, Macromolecules, 1988, vol. 21, pp. 1062–1070. https://doi.org/10.1021/ma00182a037

    Article  ADS  Google Scholar 

  3. McLeish, T.C.B. and Larson, R.G., Molecular constitutive equations for a class of branched polymers: The pom-pom polymer, J. Rheol., 1998, vol. 42, pp. 81–110. https://doi.org/10.1122/1.550933

    Article  ADS  Google Scholar 

  4. Inkson, N.J., McLeish, T.C.B., Harlen, O.G., and Groves, D.J., Predicting low density polyethylene melt rheology in elongational and shear flows with 'pom-pom' constitutive equations, J. Rheol., 1999, vol. 43, pp. 873–896. https://doi.org/10.1122/1.551036

    Article  ADS  Google Scholar 

  5. Marrucci, G. and Ianniruberto, G., Interchain pressure effect in extensional flows of entangled polymer melts, Macromolecules, 2004, vol. 37, pp. 3934–3942. https://doi.org/10.1021/ma035501u

    Article  ADS  Google Scholar 

  6. Majesté, J.C., Carrot, C., and Stanescu, P., From linear viscoelasticity to the architecture of highly branched polyethylene, Rheol. Acta, 2003, vol. 42, pp. 432–442. https://doi.org/10.1007/s00397-003-0297-8

    Article  Google Scholar 

  7. Mead, D.W., Larson, R.G., and Doi, M., A molecular theory for fast flows of entangled polymers, Macromolecules, 1998, vol. 31, pp. 7895–7914. https://doi.org/10.1021/ma980127x

    Article  ADS  Google Scholar 

  8. Rolón-Garrido, V.H. and Wagner, M.H., The MSF model: Relation of nonlinear parameters to molecular structure of long chain branched polymer melts, Rheol. Acta, 2007, vol. 46, pp. 583–593. https://doi.org/10.1007/s00397-006-0136-9

    Article  Google Scholar 

  9. Rolón-Garrido, V.H., Wagner, M.H., Luap, C., and Schweizer, T., Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts, J. Rheol., 2006, vol. 50, pp. 327–340. https://doi.org/10.1122/1.2184127

    Article  ADS  Google Scholar 

  10. Rolón-Garrido, V.H., Pivokonsky, R., Filip, P., Zatloukal, M., and Wagner, M.H., Modelling elongational and shear rheology of two LDPE melts, Rheol. Acta, 2009, vol. 48, pp. 691–697. https://doi.org/10.1007/s00397-009-0366-8

    Article  Google Scholar 

  11. Aho, J., Rolón-Garrido, V.H., Syrjälä, S., and Wagner, M.H., Extensional viscosity in uniaxial extension and contraction flow – Comparison of experimental methods and application of the molecular stress function model, J. Non-Newton. Fluid Mech., 2010, vol. 165, pp. 212–218. https://doi.org/10.1016/j.jnnfm.2009.12.003

    Article  Google Scholar 

  12. Pivokonsky, R., Zatloukal, M., and Filip, P., On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts, J. Non-Newton. Fluid Mech., 2006, vol. 135, pp. 58–67. https://doi.org/10.1016/j.jnnfm.2006.01.001

    Article  MATH  Google Scholar 

  13. Pivokonsky, R. and Filip, P., Predictive/fitting capabilities of differential constitutive models for polymer melts – reduction of nonlinear parameters in the eXtended Pom-Pom model, Colloid Polym. Sci., 2014, vol. 292, pp. 2753–2763. https://doi.org/10.1007/s00396-014-3308-7

    Article  Google Scholar 

  14. Abbasi, M., Ebrahimi, N.G., Nadali, M., and Esfahani, M.K., Elongational viscosity of LDPE with various structures: Employing a new evolution equation in MSF theory, Rheol. Acta, 2012, vol. 51, pp. 163–177. https://doi.org/10.1007/s00397-011-0572-z

    Article  Google Scholar 

  15. Pokrovskiy, V.N., Statisticheskaya mekhanika razbavlennykh suspenzii (Statistical Mechanics of Diluted Suspensions), Moscow: Nauka, 1978.

  16. Pokrovskii, V.N. and Pyshnograi, G.V., Simple forms of determining equation of concentrated polymer solutions and melts as a consequence of molecular viscoelasticity theory, Fluid Dyn., 1991, vol. 26, pp. 58–64. https://doi.org/10.1007/BF01050113

    Article  ADS  Google Scholar 

  17. Pyshnograi, G.V., Pokrovskii, V.N., Yanovskii, Yu.G., Karnet, Yu.N., and Obraztsov, I.F., Constitutive equation of nonlinear viscoelastic (polymeric) media in zero approximation with respect to molecular-theory parameters and the consequences of shear and tension, Phys. Dokl., 1994, vol. 39, pp. 889–892.

    ADS  Google Scholar 

  18. Pyshnograi, G.V. and Altukhov, Yu.A., Microstructural approach in the theory of flow of linear polymers and related effects, Polym. Sci., A, 1996, vol. 38, pp. 766–774.

  19. Pyshnograi, G.V., Gusev, A.S., and Pokrovskii, V.N., Constitutive equations for weakly entangled linear polymers, J. Non-Newton Fluid Mech., 2009, vol. 164, pp. 17–28. https://doi.org/10.1016/j.jnnfm.2009.07.003

    Article  Google Scholar 

  20. Koshelev, K.B., Pyshnograi, G.V., and Tolstykh, M.Yu., Modeling of the three-dimensional flow of polymer melt in a convergent channel of rectangular cross-section, Fluid Dyn., 2015, vol. 50, pp. 315–321. https://doi.org/10.1134/S0015462815030011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Al Joda, H.N.A., Afonin, G.L., Merzlikina, D.A., Philip, P., Pivokonsky, R., and Pyshnogray, G.V., Modification of the internal friction law in mesoscopic theory flowable polymer media, Mekh. Kompoz. Mater. Konstr., 2013, vol. 19, no. 1, pp. 128–140.

    Google Scholar 

  22. Merzlikina, D.A., Philip, P., Pivokonsky, R., and Pyshnogray, G.V., Multimode rheological model and findings for simple shear and elongation, Mekh. Kompoz. Mater. Konstr., 2013, vol. 19, no. 2, pp. 254–261.

    Google Scholar 

  23. Merzlikina, D.A., Pyshnograi, G.V., Pivokonskii, R., and Filip, P., Rheological model for describing viscometric flows of melts of branched polymers, J. Eng. Phys. Thermophys., 2016, vol. 89, pp. 652–659. https://doi.org/10.1007/s10891-016-1423-7

    Article  Google Scholar 

  24. Pokrovskii, V.N., The Mesoscopic Theory of Polymer Dynamics, Berlin: Springer, 2010. https://doi.org/10.1007/978-90-481-2231-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Makarova.

Additional information

Translated by I. Obrezanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarova, M.A., Malygina, A.S., Pyshnograi, G.V. et al. Simulation of Rheological Properties of Polyethylene Melts under Uniaxial Tension. J Appl Mech Tech Phy 62, 1063–1071 (2021). https://doi.org/10.1134/S0021894421070142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421070142

Keywords:

Navigation