Skip to main content
Log in

INFLUENCE OF HEAT TREATMENT OF LASER-WELDED JOINTS OF ALUMINUM-LITHIUM ALLOYS ON PLASTIC FLOW INSTABILITY

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The experimentally observed evolution of unstable plastic flow of laser-welded specimens of Al–6Mg–2Li, Al–1.6Cu–1.1Mg–1.8Li, and Al–3.4Cu–0.66Mg–1.5Li aluminum–lithium alloys under different heat treatment conditions after welding was analyzed. A comparison of the jerky flow of alloys with different concentrations of magnesium, copper, and lithium was performed. The effect of copper on the spatial consistency of the localized shear bands formed in aluminum–lithium alloys under unstable plastic flow was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. P. V. Trusov and E. A. Chechulina, “Jerky Flow: Physical Mechanisms, Experimental Data, Macrophenomenological Models," Vestn. Perm. Nats. Issled. Politekhn. Univ. Mekhanika, No. 3, 186–232 (2014).

  2. P. V. Trusov and E. A. Chechulina, “Jerky Flow: Models Based on the Physical Theories of Plasticity," Vestn. Perm. Nats. Issled. Politekhn. Univ. Mekhanika, No. 1, 134–163 (2017).

  3. H. Ait-Amokhtar, S. Boudrahem, and C. Fressengeas, “Spatiotemporal Aspects of Jerky Flow in Al–Mg Alloys, in Relation with the Mg Content," Scripta Materialia 54, 2113–2118 (2006).

    Article  Google Scholar 

  4. H. Ait-Amokhtar, C. Fressengeas, and S. Boudrahem, “On the Effects of the Mg Content on the Critical Strain for the Jerky Flow of Al–Mg Alloys," Materials Sci. Engng: A 631, 209–213 (2015).

    Article  Google Scholar 

  5. L. Ziani, S. Boudrahem, H. Ait-Amokhtar, et al., “Unstable Plastic Flow in the Al–2 Process," Materials Sci. Engng: A 631, 239–243 (2012).

    Article  Google Scholar 

  6. P. S. Ma, D. Zhang, L.-Z. Zhuang, and J.-S. Zhang, “Effect of Alloying Elements and Processing Parameters on the Portevin–Le Chatelier Effect of Al–Mg Alloys," Intern. J. Minerals Metall. Materials 22 (2), 175–183 (2015).

    Article  ADS  Google Scholar 

  7. G. Horvath, N. Q. Chinh, J. Gubicza, J. Lendvai, “Plastic Instabilities and Dislocation Densities during Plastic Deformation in Al–Mg Alloys," Materials Sci. Engng: A 445/446, 186–192 (2007).

    Article  Google Scholar 

  8. I. V. Shashkov, M. A. Lebyodkin, T. A. Lebedkina, “Multiscale Study of Acoustic Emission during Smooth and Jerky Flow in an AlMg Alloy," Acta Materialia 60, 6842–6850 (2012).

    Article  ADS  Google Scholar 

  9. A. Mogucheva, D. Yuzbekova, R. Kaibyshev, et al., “Effect of Grain Refinement on Jerky Flow in an Al–Mg–Sc Alloy," Metall. Materials Trans.: A 47, 2093–2106 (2016).

    Article  ADS  Google Scholar 

  10. T. V. Tretyakova and V. E. Wildemann, “Study of Spatial-Time Inhomogeneity of Serrated Plastic Flow Al–Mg Alloy: Using DIC-Technique," Frattura Integrita Strutturale 27, 83–97 (2014).

    Google Scholar 

  11. T. V. Tretyakova and V. E. Wildemann, “Regularities and Schematization of Plastic Flow Localization When Testing Flat Specimens of an Aluminum-Magnesium Alloy," Fiz. Mezomekhanika 20 (2), 71–78 (2017).

    Google Scholar 

  12. A. Benallal, T. Berstad, T. Borvik, et al., “An Experimental and Numerical Investigation of the Behaviour of AA5083 Aluminium Alloy in Presence of the Portevin–Le Chatelier Effect," Intern. J. Plasticity 24, 1916–1945 (2008).

    Article  Google Scholar 

  13. T. V. Tretyakova and V. E. Wildemann, “Influence of the Loading Conditions and the Stress Concentrators on the Spatial-Time Inhomogeneity due to the Yield Delay and the Jerky Flow: Study by Using the Digital Image Correlation and the Infrared Analysis," Frattura Integrita Strutturale 42, 303–314 (2017).

    Article  Google Scholar 

  14. L. Sun, Q. Zhang, and H. Jiang, “Effect of Solute Concentration on Portevin–Le Chateliere Effect in Al–Cu Alloys," Front. Materials Sci. China 1 (2), 173–176 (2007).

    Article  ADS  Google Scholar 

  15. A. Malikov, A. Orishich, N. Bulina, et al., “Effect of Post Heat Treatment on the Phase Composition and Strength of Laser Welded Joints of an Al–Mg–Li Alloy." Materials Sci. Engng: A 765, 138302 (2019).

    Article  Google Scholar 

  16. A. Malikov, A. Orishich, A. Golyshev, and E. Karpov, “Manufacturing of High-Strength Laser Welded Joints of an Industrial Aluminum Alloy of System Al–Cu–Li by Means of Post Heat Treatment," J. Manufactur. Process. 41, 101–110 (2019).

    Article  Google Scholar 

  17. A. Malikov, N. Bulina, M. Sharafutdinov, and A. Orishich, “Study of the Structure and Phase Composition of Laser Welded Joints of Al–Cu–Li Alloy under Different Heat Treatment Conditions," Intern. J. Adv. Manufactur. Technol. 104, (9–12), 4313–4324 (2019).

    Article  Google Scholar 

  18. A. G. Malikov, A. M. Orishich, E. V. Karpov, and I. E. Vitoshkin, “Control of the Mechanical Properties and Microstructure of Laser Welded Joints of the Aluminum Alloy V-1461 after Heat Treatment," Materials Phys. Mech. 43 (1), 1–10 (2020).

    Google Scholar 

  19. E. V. Karpov, A. G. Malikov, and A. M. Orishich, “Influence of Preliminary Plastic Deformation on the Strength of Laser Welded Joints of 1420 Aluminum–Lithium Alloy," Deform. Razrush. Mater., No. 5, 19–24 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Karpov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 6, pp. 146-161. https://doi.org/10.15372/PMTF20210617.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, E.V., Malikov, A.G. & Orishich, A.M. INFLUENCE OF HEAT TREATMENT OF LASER-WELDED JOINTS OF ALUMINUM-LITHIUM ALLOYS ON PLASTIC FLOW INSTABILITY. J Appl Mech Tech Phy 62, 1015–1027 (2021). https://doi.org/10.1134/S0021894421060171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421060171

Keywords

Navigation