Skip to main content
Log in

Effect of alloying elements and processing parameters on the Portevin-Le Chatelier effect of Al-Mg alloys

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of Al-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serration because it initially contains a large number of grain boundaries and dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.B. Burger, A.K. Gupta, P.W. Jeffrey, and D.J. Lloyd, Microstructural control of aluminum sheet used in automotive applications, Mater. Charact., 35(1995), No. 1, p. 23.

    Article  Google Scholar 

  2. G.S. Cole and A.M. Sherman, Light weight materials for automotive applications, Mater. Charact., 35(1995), No. 1, p. 3.

    Article  Google Scholar 

  3. A. Yilmaz, The Portevin-Le Chatelier effect: a review of experimental findings, Sci. Technol. Adv. Mater., 12(2011), No. 6, article No. 063001.

    Google Scholar 

  4. H.F. Jiang, Q.C. Zhang, X.D. Chen, Z.J. Chen, Z.Y. Jiang, X.P. Wu, and J.H. Fan, Three types of Portevin-Le Chatelier effects: experiment and modelling, Acta Mater., 55(2007), No. 7, p. 2219.

    Article  Google Scholar 

  5. C. Bernard, J. Coër, H. Laurent, P. Chauvelon, and P.Y. Manach, Relationship between local strain jumps and temperature bursts due to the Portevin-Le Chatelier effect in an Al-Mg alloy, Exp. Mech., 53(2013), No. 6, p. 1025.

    Article  Google Scholar 

  6. W. Wen and J.G. Morris, An investigation of serrated yielding in 5000 series aluminum alloys, Mater. Sci. Eng. A, 354(2003), No. 1–2, p. 279.

    Article  Google Scholar 

  7. K. Darowicki, J. Orlikowski, and A. Zieliński, Investigation of changes in the type B PLC effect of Al-Mg-Cu type alloy for various strain rates, Mater. Sci. Eng. A, 496(2008), No. 1–2, p. 478.

    Article  Google Scholar 

  8. W. Wen and J.G. Morris, The effect of cold rolling and annealing on the serrated yielding phenomenon of AA5182 aluminum alloy, Mater. Sci. Eng. A, 373(2004), No. 1–2, p. 204.

    Article  Google Scholar 

  9. S.H. Fu, T. Cheng, Q.C. Zhang, Q. Hu, and P.T. Cao, Two mechanisms for the normal and inverse behaviors of the critical strain for the Portevin-Le Chatelier effect, Acta Mater., 60(2012), No. 19, p. 6650.

    Article  Google Scholar 

  10. H.F. Jiang, Q.C. Zhang, Z.Y. Jiang, and X.P. Wu, Experimental investigations on kinetics of Portevin-Le Chatelier effect in Al-4wt.% Cu alloys, J. Alloys Compd., 428(2007), No. 1–2, p. 151.

    Article  Google Scholar 

  11. R. Shabadi, S. Kumar, H.J. Roven, and E.S. Dwarakadasa, Effect of specimen condition, orientation and alloy composition on PLC band parameters, Mater. Sci. Eng. A, 382(2004), No. 1–2, p. 203.

    Article  Google Scholar 

  12. A. van den Beukel and U.F. Kocks, The strain dependence of static and dynamic strain-aging, Acta Mater., 30(1982), No. 5, p. 1027.

    Article  Google Scholar 

  13. A. Sarkar, P. Barat, and P. Mukherjee, Investigation of Portevin-Le Chatelier effect in Al-2.5 pct Mg alloy with different microstructure, Metall. Mater. Trans. A, 44(2013), No. 6, p. 2604.

    Article  Google Scholar 

  14. G. Saad, S.A. Fayek, A. Fawzy, H.N. Soliman, and E. Nassr, Serrated flow and work hardening characteristics of Al-5356 alloy, J. Alloys Compd., 502(2010), No. 1, p. 139.

    Article  Google Scholar 

  15. H. Ait-Amokhtar, S. Boudrahem, and C. Fressengeas, Spatiotemporal aspects of jerky flow in Al-Mg alloys, in relation with the Mg content, Scripta Mater., 54(2006), No. 12, p. 2113.

    Article  Google Scholar 

  16. H. Halim, D.S. Wilkinson, and M. Niewczas, The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy, Acta Mater., 55(2007), No. 12, p. 4151.

    Article  Google Scholar 

  17. J.D. Kang, R.K. Mishra, D.S. Wilkinson, and O.S. Hopperstad, Effect of Mg content on Portevin-Le Chatelier band strain in Al-Mg sheet alloys, Philos. Mag. Lett., 92(2012), No. 11, p. 647.

    Article  Google Scholar 

  18. H.F. Jiang, Q.C. Zhang, X.P. Wu, and J.H. Fan, Spatiotemporal aspects of the Portevin-Le Chatelier effect in annealed and solution-treated aluminum alloys, Scripta Mater., 54(2006), No. 12, p. 2041.

    Article  Google Scholar 

  19. Q. Hu, Q.C. Zhang, P.T. Cao, and S.H. Fu, Thermal analyses and simulations of the type A and type B Portevin-Le Chatelier effects in an Al-Mg alloy, Acta Mater., 60(2012), No. 4, p. 1647.

    Article  Google Scholar 

  20. P.T. Cao, Q.C. Zhang, R. Xiao, and S.M. Xiong, The Portevin-Le Chatelier effect in Al-Mg alloy investigated by infrared pyrometry, Acta Phys. Sin., 58(2009), No. 8, p. 5591.

    Google Scholar 

  21. J.M. Reed and M.E. Walter, Observations of serration characteristics and acoustic emission during serrated flow of an Al-Mg alloy, Mater. Sci. Eng. A, 359(2003), No. 1–2, p. 1.

    Article  Google Scholar 

  22. W. Wen, Y.M. Zhao, and J.G. Morris, The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys, Mater. Sci. Eng. A, 392(2005), No. 1–2, p. 136.

    Article  Google Scholar 

  23. J. Kang, D.S. Wilkinson, M. Jain, J.D. Embury, A.J. Beaudoin, S. Kim, R. Mishira, and A.K. Sachdev, On the sequence of inhomogeneous deformation processes occurring during tensile deformation of strip cast AA5754, Acta Mater., 54(2006), No. 1, p. 209.

    Article  Google Scholar 

  24. M. Zha, Y.J. Li, R.H. Mathiesen, R. Bjørge, and H.J. Roven, Achieve high ductility and strength in an Al-Mg alloy by severe plastic deformation combined with inter-pass annealing, Mater. Sci. Eng. A, 598(2014), p. 141.

    Article  Google Scholar 

  25. P. Rodriguez, Serrated plastic flow, Bull. Mater. Sci., 6(1984), No. 4, p. 653.

    Article  Google Scholar 

  26. H. Fujita and T. Tabata, Discontinuous deformation in Al-Mg alloys under various conditions, Acta Metall., 25(1977), No. 7, p. 793.

    Article  Google Scholar 

  27. Y.T. Zhu and T.G. Langdon, The fundamentals of nanostructured materials processed by severe plastic deformation, JOM, 56(2004), No. 10, p. 58.

    Article  Google Scholar 

  28. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys, Adv. Mater., 18(2006), No. 17, p. 2280.

    Article  Google Scholar 

  29. Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu, Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper, Adv. Mater., 18(2006), No. 22, p. 2949.

    Article  Google Scholar 

  30. J.P. Lin, Effect of Mg content on dynamic recrystallization behaviors of Al-Mg alloys, J. Univ. Sci. Technol. Beijing, 19(1997), No. 1, p. 47.

    Google Scholar 

  31. J. Gubicza, N.Q. Chinh, Z. Horita, and T.G. Langdon, Effect of Mg addition on microstructure and mechanical properties of aluminum, Mater. Sci. Eng. A, 387-389(2004), p. 55.

    Article  Google Scholar 

  32. J.M. Robinson and M.P. Shaw, Microstructural and mechanical influences on dynamic strain aging phenomena, Int. Mater. Rev., 39(1994), No. 3, p. 113.

    Article  Google Scholar 

  33. M. Wagenhofer, M.A. Erickson-Natishan, R.W. Armstrong, and F.J. Zerilli, Influences of strain rate and grain size on yield and serrated flow in commercial Al-Mg alloy 5086, Scripta Mater., 41(1999), No. 11, p. 1177.

    Article  Google Scholar 

  34. B.Q. Han, J.Y. Huang, Y.T. Zhu, and E.J. Lavernia, Effect of strain rate on the ductility of a nanostructured aluminum alloy, Scripta Mater., 54(2006), No. 6, p. 1175.

    Article  Google Scholar 

  35. F. Chmelík, E. Pink, J. Król, J. Balík, J. Pešička, and P. Lukáč, Mechanisms of serrated flow in aluminium alloys with precipitates investigated by acoustic emission, Acta Mater., 46(1998), No. 12, p. 4435.

    Article  Google Scholar 

  36. P.G. McCormick, The Portevin-Le Chatelier effect in an Al-Mg-Si alloy, Acta Metall., 19(1971), No. 5, p. 463.

    Article  Google Scholar 

  37. R.C. Picu and D. Zhang, Atomistic study of pipe diffusion in Al-Mg alloys, Acta Mater., 52(2004), No. 1, p. 161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Pc., Zhang, D., Zhuang, Lz. et al. Effect of alloying elements and processing parameters on the Portevin-Le Chatelier effect of Al-Mg alloys. Int J Miner Metall Mater 22, 175–183 (2015). https://doi.org/10.1007/s12613-015-1058-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1058-2

Keywords

Navigation