Skip to main content
Log in

Study of the structure and phase composition of laser welded joints of Al-Cu-Li alloy under different heat treatment conditions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper explores the structure and phase composition of laser welded joints of Al-Cu-Li alloy without and after post heat treatment (annealing, quenching, and artificial aging). Changes in the structure and phase composition of welds and the base alloy before and after heat treatment are studied using scanning electron microscopy, X-ray diffractometry, and synchrotron radiation diffraction. The investigation results have shown that the formed agglomerates of intermetallic particles are mainly represented by the Т1(Al2CuLi) phase. The change in the strength of the Al-Cu-Li alloy samples after laser welding and heat treatment is not due to the absence or presence of the strengthening Т1(Al2CuLi) intermetallic phase but rather due to the different localization of particles of this phase in the weld joint. The segregation of the phase at dendritic grain boundaries leads to a significant strength decrease, and, vice versa, its homogeneous distribution in the solid solution achieved by post heat treatment (annealing, quenching, and artificial aging) increases the strength of the laser welded samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rioja RJ, Liu J (2012) The evolution of Al-Li base products for aerospace and space applications. Metall Mater Trans A Phys Metall Mater Sci 43:3325–3337. https://doi.org/10.1007/s11661-012-1155-z

    Article  Google Scholar 

  2. Abd El-Aty A, Xu Y, Guo X et al (2018) Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: a review. J Adv Res 10:49–67. https://doi.org/10.1016/j.jare.2017.12.004

    Article  Google Scholar 

  3. Betsofen SY, Antipov VV, Knyazev MI (2016) Al–Cu–Li and Al–Mg–Li alloys: phase composition, texture, and anisotropy of mechanical properties (review). Russ Metall 2016:326–341. https://doi.org/10.1134/S0036029516040042

    Article  Google Scholar 

  4. Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Des 56:862–871. https://doi.org/10.1016/j.matdes.2013.12.002

    Article  Google Scholar 

  5. Starke EA (2014) Historical development and present status of aluminum–lithium alloys. Aluminum-lithium Alloy 3–26. https://doi.org/10.1016/B978-0-12-401698-9.00001-X

    Chapter  Google Scholar 

  6. Dorin T, Vahid A, Lamb J (2018) Aluminium lithium alloys. Fundam Alum Metall 387–438. https://doi.org/10.1016/B978-0-08-102063-0.00011-4

    Chapter  Google Scholar 

  7. Hu YN, Wu SC, Chen L (2019) Review on failure behaviors of fusion welded high-strength Al alloys due to fine equiaxed zone. Eng Fract Mech 208:45–71. https://doi.org/10.1016/J.ENGFRACMECH.2019.01.013

    Article  Google Scholar 

  8. Xiao R, Zhang X (2014) Problems and issues in laser beam welding of aluminum-lithium alloys. J Manuf Process 16:166–175. https://doi.org/10.1016/j.jmapro.2013.10.005

    Article  Google Scholar 

  9. Kashaev N, Ventzke V, Çam G (2018) Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. J Manuf Process 36:571–600. https://doi.org/10.1016/j.jmapro.2018.10.005

    Article  Google Scholar 

  10. Çam G, İpekoğlu G (2017) Recent developments in joining of aluminum alloys. Int J Adv Manuf Technol 91:1851–1866. https://doi.org/10.1007/s00170-016-9861-0

    Article  Google Scholar 

  11. Dittrich D, Standfuss J, Liebscher J, Brenner B, Beyer E (2011) Laser beam welding of hard to weld Al alloys for a regional aircraft fuselage design – first results. Phys Procedia 12:113–122. https://doi.org/10.1016/j.phpro.2011.03.015

    Article  Google Scholar 

  12. Enz J, Carrarin C, Riekehr S, Ventzke V, Kashaev N (2018) Hot cracking behaviour of an autogenously laser welded Al-Cu-Li alloy. Int J Adv Manuf Technol 95:299–310. https://doi.org/10.1007/s00170-017-1197-x

    Article  Google Scholar 

  13. Ning J, Jie ZL, Lin BQ et al (2017) Comparison of the microstructure and mechanical performance of 2A97 Al-Li alloy joints between autogenous and non-autogenous laser welding. Mater Des 120:144–156. https://doi.org/10.1016/j.matdes.2017.02.003

    Article  Google Scholar 

  14. Fu B, Qin G, Meng X, Ji Y, Zou Y, Lei Z (2014) Microstructure and mechanical properties of newly developed aluminum-lithium alloy 2A97 welded by fiber laser. Mater Sci Eng A 617:1–11. https://doi.org/10.1016/j.msea.2014.08.038

    Article  Google Scholar 

  15. Han B, Tao W, Chen Y, Li H (2017) Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: effects of filler elements on microstructure and mechanical properties. Opt Laser Technol 93:99–108. https://doi.org/10.1016/j.optlastec.2017.02.004

    Article  Google Scholar 

  16. Gu C, Wei Y, Zhan X, Zhang D, Ren S, Liu H, Li H (2017) Investigation of welding parameters on microstructure and mechanical properties of laser beam-welded joint of 2060 Al–Cu–Li alloy. Int J Adv Manuf Technol 91:771–780. https://doi.org/10.1007/s00170-016-9806-7

    Article  Google Scholar 

  17. Oliveira PI, Costa JM, Loureiro A (2018) Effect of laser beam welding parameters on morphology and strength of dissimilar AA2024/AA7075 T-joints. J Manuf Process 35:149–160. https://doi.org/10.1016/j.jmapro.2018.08.003

    Article  Google Scholar 

  18. Zhang X, Yang W, Xiao R (2015) Microstructure and mechanical properties of laser beam welded Al-Li alloy 2060 with Al-Mg filler wire. Mater Des 88:446–450. https://doi.org/10.1016/j.matdes.2015.08.144

    Article  Google Scholar 

  19. Zhang X, Huang T, Yang W, Xiao R, Liu Z, Li L (2016) Microstructure and mechanical properties of laser beam-welded AA2060 Al-Li alloy. J Mater Process Technol 237:301–308. https://doi.org/10.1016/j.jmatprotec.2016.06.021

    Article  Google Scholar 

  20. Faraji AH, Moradi M, Goodarzi M, Colucci P, Maletta C (2017) An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy. Opt Lasers Eng 96:1–6. https://doi.org/10.1016/J.OPTLASENG.2017.04.004

    Article  Google Scholar 

  21. Liu F, Wang X, Zhou B, Huang C, Lyu F (2018) Corrosion resistance of 2060 aluminum–lithium alloy LBW welds filled with Al-5.6Cu wire. Materials (Basel) 11:1988. https://doi.org/10.3390/ma11101988

    Article  Google Scholar 

  22. Zhang X, Liu B, Zhou X, Wang J, Hashimoto T, Luo C, Sun Z, Tang Z, Lu F (2018) Laser welding introduced segregation and its influence on the corrosion behaviour of Al-Cu-Li alloy. Corros Sci 135:177–191. https://doi.org/10.1016/j.corsci.2018.02.044

    Article  Google Scholar 

  23. He E, Liu J, Lee J, Wang K, Politis DJ, Chen L, Wang L (2018) Effect of porosities on tensile properties of laser-welded Al-Li alloy: an experimental and modelling study. Int J Adv Manuf Technol 95:659–671. https://doi.org/10.1007/s00170-017-1175-3

    Article  Google Scholar 

  24. Annin BD, Fomin VM, Karpov EV, Malikov AG, Orishich AM, Cherepanov AN (2015) Development of a technology for laser welding of the 1424 aluminum alloy with a high strength of the welded joint. J Appl Mech Tech Phys 56:945–950. https://doi.org/10.1134/S0021894415060024

    Article  Google Scholar 

  25. Malikov AG, Orishich AM (2018) Laser welding of the high-strength Al–Cu–Li alloy. Int J Adv Manuf Technol 94:2217–2227. https://doi.org/10.1007/s00170-017-0860-6

    Article  Google Scholar 

  26. Wang S, Zhao L, Jin Y (2019) Influence of post-weld heat treatment on microstructure and mechanical properties of laser beam welded 2195 Al–Li alloy. Mater Res Express 6:076567. https://doi.org/10.1088/2053-1591/ab1736

    Article  Google Scholar 

  27. Fridlyander IN, Grushko OE, Shamrai VF, Klochkov GG (2007) High-strength structural silver-alloyed underdensity Al-Cu-Li-Mg alloy. Met Sci Heat Treat 49:279–283. https://doi.org/10.1007/s11041-007-0049-y

    Article  Google Scholar 

  28. Shamrai VF, Klochkova YY, Lazarev EM, Gordeev AS, Sirotinkin VP (2013) Structural states of aluminum-lithium alloy 1469 sheets. Russ Metall 2013:699–705. https://doi.org/10.1134/S0036029513090139

    Article  Google Scholar 

  29. Jia M, Zheng Z, Gong Z (2014) Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. J Alloys Compd 614:131–139. https://doi.org/10.1016/J.JALLCOM.2014.06.033

    Article  Google Scholar 

  30. Cheary RW, Coelho A (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25:109–121. https://doi.org/10.1107/S0021889891010804

    Article  Google Scholar 

  31. Van Smaalen S, Meetsma A, De Boer JL, Bronsveld PM (1990) Refinement of the crystal structure of hexagonal Al2CuLi. J Solid State Chem 85:293–298. https://doi.org/10.1016/S0022-4596(05)80086-6

    Article  Google Scholar 

  32. Belov NA, Eskin DG, Aksenov AA, et al (2005) Alloys with lithium. Multicomponent Phase Diagrams 257–286. https://doi.org/10.1016/B978-008044537-3/50008-1

    Chapter  Google Scholar 

  33. Cassada WA, Shiflet GJ, Starke EA (1991) The effect of plastic deformation on Al2CuLi (T 1) precipitation. Metall Trans A 22:299–306. https://doi.org/10.1007/BF02656799

    Article  Google Scholar 

  34. De Geuser F, Bley F, Deschamps A (2012) A new method for evaluating the size of plate-like precipitates by small-angle scattering. J Appl Crystallogr 45:1208–1218. https://doi.org/10.1107/s0021889812039891

    Article  Google Scholar 

  35. Pasang T, Symonds N, Moutsos S, Wanhill RJH, Lynch SP (2012) Low-energy intergranular fracture in Al–Li alloys. Eng Fail Anal 22:166–178. https://doi.org/10.1016/J.ENGFAILANAL.2012.01.006

    Article  Google Scholar 

  36. Neibecker P, Leitner M, Kushaim M, Boll T, Anjum D, al-Kassab T’, Haider F (2017) L12 ordering and δ′ precipitation in Al-Cu-Li. Sci Rep 7:3254. https://doi.org/10.1038/s41598-017-03203-z

    Article  Google Scholar 

  37. Yoshimura R, Konno TJ, Abe E, Hiraga K (2003) Transmission electron microscopy study of the early stage of precipitates in aged Al–Li–Cu alloys. Acta Mater 51:2891–2903. https://doi.org/10.1016/S1359-6454(03)00104-6

    Article  Google Scholar 

  38. Gault B, de Geuser F, Bourgeois L, Gabble BM, Ringer SP, Muddle BC (2011) Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al–Cu–Li–Mg–Ag alloy. Ultramicroscopy 111:683–689. https://doi.org/10.1016/J.ULTRAMIC.2010.12.004

    Article  Google Scholar 

  39. Decreus B, Deschamps A, De Geuser F et al (2013) The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Mater 61:2207–2218. https://doi.org/10.1016/J.ACTAMAT.2012.12.041

    Article  Google Scholar 

  40. Duan SY, Wu CL, Gao Z, Cha LM, Fan TW, Chen JH (2017) Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys. Acta Mater 129:352–360. https://doi.org/10.1016/J.ACTAMAT.2017.03.018

    Article  Google Scholar 

  41. Deschamps A, Sigli C, Mourey T, de Geuser F, Lefebvre W, Davo B (2012) Experimental and modelling assessment of precipitation kinetics in an Al–Li–Mg alloy. Acta Mater 60:1917–1928. https://doi.org/10.1016/J.ACTAMAT.2012.01.010

    Article  Google Scholar 

  42. Shamrai VF, Timofeev VN, Grushko OE (2010) Investigation of the structure of compacts and sheets of an Al-Cu-Li alloy strengthened by Al2CuLi (T1) particles. Phys Met Metallogr 109:383–391. https://doi.org/10.1134/S0031918X10040125

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 17-79-20139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Malikov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malikov, A., Bulina, N., Sharafutdinov, M. et al. Study of the structure and phase composition of laser welded joints of Al-Cu-Li alloy under different heat treatment conditions. Int J Adv Manuf Technol 104, 4313–4324 (2019). https://doi.org/10.1007/s00170-019-04286-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04286-w

Keywords

Navigation