Skip to main content
Log in

Opening of a system of cracks—on the mechanism of the cyclic lateral eruption of the St. Helens volcano in 1980

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The dynamic behavior of a magma melt filling a slot channel (crack) in a closed explosive hydrodynamic structure is considered. The explosive hydrodynamic structure includes the volcano focal point with a connected vertical channel (conduit) closed by a slug and a system of internal cracks (dikes) near the dome, as well as a crater open into the atmosphere. A two-dimensional model of a slot eruption is constructed with the use of the Iordanskii–Kogarko–van Wijngaarden mathematical model of two-phase media and the kinetics that describes the basic physical processes in a heavy magma saturated by the gas behind the decompression wave front. A numerical scheme is developed for analyzing the influence of the boundary conditions on the conduit walls and scale factors on the melt flow structure, the role of viscosity in static modes, and dynamic formulations with allowance for diffusion processes and increasing (by several orders of magnitude) viscosity. Results of the numerical analysis of the initial stage of cavitation process evolution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Kedrinskiy, “Hydrodynamic Aspects of Explosive Eruptions of Volcanoes: Simulation Problems,” Shock Waves 18 (6), 451–464 (2009).

    Article  ADS  MATH  Google Scholar 

  2. F. Dobran, “Nonequilibrium Flow in Volcanic Conduits and Application to the Eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79,” J. Volcanol. Geotherm. Res. 49 (34), 285–311 (1992).

    Article  ADS  Google Scholar 

  3. H. M. Gonnermann and M. Manga, “The Fluid Mechanics inside a Volcano,” Annu. Rev. Fluid Mech. 39, 321–356 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A. W. Woods, “The Dynamics of Explosive Volcanic Eruptions,” Rev. Geophys. 33 (4), 495–530 (1995).

    Article  ADS  Google Scholar 

  5. A. Gerst, M. Horst, P. R. Kyle, and M. Voege, “The First Second of a Strombolian Eruption: Velocity Observations at Erebus Volcano, Antarctica,” EOS Trans. Amer. Geophys. Union 87 (52) (2006); Fall Meet. Suppl. Abstr., V31G-04.

    Article  Google Scholar 

  6. H. E. Huppert and A. W. Wood, “The Role of Volatiles in Magma Chamber Dynamics,” Nature 420 (5), 493–495 (2002).

    Article  ADS  Google Scholar 

  7. P. Papale, A. Neri, and G. Macedorio, “The Role of Magma Composition and Water Content in Explosive Eruptions. 1. Conduit Ascent Dynamics,” J. Volcanol. Geotherm. Res. 87 (1–4), 75–93 (1998).

    Article  ADS  Google Scholar 

  8. V. K. Kedrinskii, A. I. Makarov, S. V. Stebnovskii, and K. Takayama, “Explosive Eruption of Volcanoes: Some Approaches to Simulation,” Fiz. Goreniya Vzryva 41 (6), 193–201 (2005) [Combust., Expl., Shock Waves 41 (6), 777–786 (2005)].

    Google Scholar 

  9. L. Wilson, “Relationships between Pressure, Volatile Content and Ejecta Velocity in Three Types of Volcanic Explosion,” J. Volcanol. Geotherm. Res. 8 (2–4), 297–313 (1980).

    Article  ADS  Google Scholar 

  10. A. A. Barmin and O. E. Melnik, “Hydrodynamics of Volcanic Eruptions,” Usp. Mekh. 1 (1) 32–60 (2002).

    Google Scholar 

  11. A. Barmin, O. Melnik, and R. S. J. Sparks, “Periodic Behavior in Lava Dome Eruptions,” Earth Planet. Sci. Lett. 199 (1/2), 173–184 (2002).

    Article  ADS  Google Scholar 

  12. O. E. Melnik and R. S. J. Sparks, “Non-Linear Dynamics of Lava Dome Extrusion,” Nature 402 (4), 37–41 (1999).

    ADS  Google Scholar 

  13. O. E. Melnik, “Dynamics of Two-Phase Conduit Flow of High-Viscosity Gas-Saturated Magma: Large Variations of Sustained Explosive Eruption Intensity,” Bull. Volcanol. 62 (3), 153–170 (2000).

    Article  ADS  Google Scholar 

  14. O. E. Melnik and R. S. J. Sparks, “Controls on Conduit Magma Flow Dynamics during Lava Dome Building Eruptions,” J. Geophys. Res. 110, B02209 (2005).

    ADS  Google Scholar 

  15. M. Mangan and T. Sisson, “Delayed, Disequilibrium Degassing in Rhyolite Magma: Decompression Experiments and Implications for Explosive Volcanism,” Earth Planet. Sci. Lett. 183 (3/4), 441–455 (2000).

    Article  ADS  Google Scholar 

  16. S. I. Lezhnin, N. A. Pribaturin, and A. L. Sorokin, “Effect of Viscosity on Nucleation of Bubbles in Decompressed Water-Saturated Magma,” Prikl. Mekh. Tekh. Fiz. 46 (1), 21–28 (2005) [J. Appl. Mech. Tech. Phys. 46 (1), 14–20 (2005)].

    MATH  Google Scholar 

  17. H. Massol and T. Koyaguchi, “The Effect of Magma Flow on Nucleation of Gas Bubbles in a Volcanic Conduit,” J. Volcanol. Geotherm. Res. 143 (1–3), 69–88 (2005).

    Article  ADS  Google Scholar 

  18. C. C. Mourtada-Bonnefoi and D. Laporte, “Kinetics of Bubble Nucleation in a Rhyolitic Melt: An Experimental Study of the Effect of Ascent Rate,” Earth Planet. Sci. Lett. 218 (3/4), 521–537 (2004).

    Article  ADS  Google Scholar 

  19. A. Toramaru, “Vesiculation Process and Bubble Size Distributions in Ascending Magmas with Constant Velocities,” J. Geophys. Res. 94 (B12), 17523–17542 (1989).

    Article  ADS  Google Scholar 

  20. A. Toramaru, “Numerical Study of Nucleation and Growth of Bubbles in Viscous Magmas,” J. Geophys. Res. 100 (B2), 1913–1931 (1995).

    Article  ADS  Google Scholar 

  21. A. A. Chernov, V. K. Kedrinsky, and A. A. Pil’nik, “Kinetics of Gas Bubble Nucleation and Growth in Magmatic Melt at its Rapid Decompression,” Phys. Fluids 26 (11), 116602 (2014).

    Article  ADS  Google Scholar 

  22. N. G. Lensky, V. Lyakhovsky, and O. Navon, “Expansion Dynamics of Volatile-Supersaturated Liquids and Bulk Viscosity of Bubbly Magmas,” J. Fluid Mech. 460, 39–56 (2002).

    Article  ADS  MATH  Google Scholar 

  23. N. G. Lensky, O. Navon, and V. Lyakhovsky, “Bubble Growth during Decompression of Magma: Experimental and Theoretical Investigation,” J. Volcanol. Geotherm. Res. 129 (1–3), 7–22 (2004).

    Article  ADS  Google Scholar 

  24. V. Lyakhovsky, S. Hurwitz, and O. Navon, “Bubble Growth in Rhyolitic Melts: Experimental and Numerical Investigation,” Bull. Volcanol. 58 (1), 19–32 (1996).

    Article  ADS  Google Scholar 

  25. O. Navon, A. Chekhmir, and V. Lyakhovsky, “Bubble Growth in Highly Viscous Melts: Theory, Experiments, and Autoexplosivity of Dome Lavas,” Earth Planet. Sci. Lett. 160 (3/4), 763–776 (1998).

    Article  ADS  Google Scholar 

  26. J. D. Blower, J. P. Keating, H. M. Mader, et al., “The Evolution of Bubble Size Distributions in Volcanic Eruptions,” J. Volcanol. Geotherm. Res. 120 (1/2), 1–23 (2003).

    Article  ADS  Google Scholar 

  27. Y. Liu and Y. X. Zhang, “Bubble Growth in Rhyolitic Melt,” Earth Planet. Sci. Lett. 181 (1/2), 251–264 (2000).

    Article  ADS  Google Scholar 

  28. V. K. Kedrinskii, “Dynamics of a “Collective” Bubble in a Magma Melt Flow behind the Decompression Wave Front,” Prikl. Mekh. Tekh. Fiz. 52 (3), 41–50 (2011) [J. Appl. Mech. Tech. Phys. 52 (3), 363–370 (2011)].

    MATH  Google Scholar 

  29. A. A. Proussevitch, D. L. Sahagian, and A. T. Anderson, “Dynamics of Diffusive Bubble Growth in Magmas: Isothermal Case,” J. Geophys. Res. 98 (B12), 22283–22307 (1993).

    Article  ADS  Google Scholar 

  30. A. A. Proussevitch and D. L. Sahagian, “Dynamics of Coupled Diffusive and Decompressive Bubble Growth in Magmatic Systems,” J. Geophys. Res. 101 (B8), 17447–17456 (1996).

    Article  ADS  Google Scholar 

  31. A. A. Proussevitch and D. L. Sahagian, “Dynamics and Energetics of Bubble Growth in Magmas: Analytical Formulation and Numerical Modeling,” J. Geophys. Res. 103 (B8), 18223–18251 (1998).

    Article  ADS  Google Scholar 

  32. A. A. Chernov, “A Model of Magma Solidification during Explosive Volcanic Eruptions,” Prikl. Mekh. Tekh. Fiz. 44 (5), 79–90 (2003) [J. Appl. Mech. Tech. Phys. 44 (5), 667–675 (2003)].

    MATH  Google Scholar 

  33. M. Hort, “Abrupt Change in Magma Liquidus Temperature because of Volatile Loss or Magma Mixing: Effects on Nucleation, Crystal Growth and Thermal History of the Magma,” J. Petrology 39 (5), 1063–1076 (1998).

    Article  Google Scholar 

  34. A. Toramaru, “Model of Nucleation and Growth of Crystals in Cooling Magmas,” Contrib. Mineral. Petrol. 108 (1/2), 106–117 (1991).

    Article  ADS  Google Scholar 

  35. V. K. Kedrinskiy, “Explosive Eruptions of Volcanoes: Simulation, Shock Tube Methods and Multi-Phase Mathematical Models,” in Plenary Lecture, Proc. of the 26th Int. Symp. on Shock Waves, Göttingen, July 17–21, 2007 (Springer, Berlin, 2009), pp. 19–26.

    Google Scholar 

  36. M. Adilbirov and D. B. Dingwell, “Magma Fragmentation by Rapid Decompression,” Nature 380, 146–148 (1996).

    Article  ADS  Google Scholar 

  37. J. E. Gardner, R. M. E. Thomas, C. Jaupart, et al., “Fragmentation of Magma during Plinian Volcanic Eruptions,” Bull. Volcanol. 58 (2/3), 144–162 (1996).

    Article  ADS  Google Scholar 

  38. A. A. Proussevitch, D. L. Sahagian, and V. A. Kutolin, “Stability of Foams in Silicate Melts,” J. Volcanol. Geotherm. Res. 59 (1/2), 161–178 (1993).

    Article  ADS  Google Scholar 

  39. M. D. Davydov, V. K. Kedrinskii, A. A. Chernov, and K. Takayama, “Initial Stage of the Explosive Volcanic Eruption: Magma State Dynamics in Unloading Waves,” Dokl. Akad. Nauk 407 (3), 190–193 (2006).

    MATH  Google Scholar 

  40. V. K. Kedrinskii and M. N. Davydov, “Dynamics of the Boundary Layer Structure in the Volcano Conduit during an Explosive Eruption,” Dokl. Akad. Nauk 431 (5), 625–629 (2010).

    Google Scholar 

  41. V. K. Kedrinskii, “Role of Nuclei Density in a “Hidden” Parameter in the Formation of Anomalous Zones in a Heavy Cavitating Magma,” Prikl. Mekh. Tekh. Fiz. 55 (2), 101–107 (2014) [J. Appl. Mech. Tech. Phys. 55 (2), 276–281 (2014)].

    Google Scholar 

  42. V. A. Vshivkov, V. K. Kedrinskii, G. I. Dudnikova, and Yu. I. Shokin, “On a Numerical Model of Formation of a Discontinuity in a Bubble Fluid under Pulsed Loading,” Dokl. Akad. Nauk 464 (1), 31–34 (2015).

    Google Scholar 

  43. E. Ya. Gatapova, V. S. Azhaev, and O. A. Kabov, “Reduction of Hydraulic Resistance in a Two-Phase Flow,” Pis’ma Zh. Eksp. Teor. Fiz. 101 (3), 176–180 (2015).

    Google Scholar 

  44. A. A. Chernov, V. K. Kedrinskii, and M. N. Davydov, “Spontaneous Nucleation of Bubbles in a Gas-Saturated Melt under Instantaneous Decompression,” Prikl. Mekh. Tekh. Fiz. 45 (2), 162–168 (2004) [J. Appl. Mech. Tech. Phys. 45 (2), 281–285 (2004)].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Kedrinskii.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 4, pp. 3–15, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kedrinskii, V.K., Davydov, M.N., Pilnik, A.A. et al. Opening of a system of cracks—on the mechanism of the cyclic lateral eruption of the St. Helens volcano in 1980. J Appl Mech Tech Phy 57, 577–587 (2016). https://doi.org/10.1134/S0021894416040015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416040015

Keywords

Navigation