Skip to main content
Log in

Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Numerical simulations are useful tools to illustrate how flow parameters and physical processes may affect eruption dynamics of volcanoes. In this paper, we present an updated version of the Conflow model, an open-source numerical model for flow in eruptive conduits during steady-state pyroclastic eruptions (Mastin and Ghiorso in A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. U.S. Geological Survey Open File Report 00-209, 2000). In the modified version, called Confort 15, the rheological constraints are improved, incorporating the most recent constitutive equations of both the liquid viscosity and crystal-bearing rheology. This allows all natural magma compositions, including the peralkaline melts excluded in the original version, to be investigated. The crystal-bearing rheology is improved by computing the effect of strain rate and crystal shape on the rheology of natural magmatic suspensions and expanding the crystal content range in which rheology can be modeled compared to the original version (Conflow is applicable to magmatic mixtures with up to 30 vol% crystal content). Moreover, volcanological studies of the juvenile products (crystal and vesicle size distribution) of the investigated eruption are directly incorporated into the modeling procedure. Vesicle number densities derived from textural analyses are used to calculate, through Toramaru equations, maximum decompression rates experienced during ascent. Finally, both degassing under equilibrium and disequilibrium conditions are considered. This allows considerations on the effect of different fragmentation criteria on the conduit flow analyses, the maximum volume fraction criterion (“porosity criterion”), the brittle fragmentation criterion and the overpressure fragmentation criterion. Simulations of the pantelleritic and trachytic phases of the Green Tuff (Pantelleria) and of the Plinian Etna 122 BC eruptions are performed to test the upgrades in the Confort 15 modeling. Conflow and Confort 15 numerical results are compared analyzing the effect of viscosity, decompression rate, temperature, fragmentation criteria (critical strain rate, porosity and overpressure criteria) and equilibrium versus disequilibrium degassing in the magma flow along volcanic conduits. The equilibrium simulation results indicate that an increase in viscosity, a faster decompression rate, a decrease in temperature or the application of the porosity criterion in place of the strain rate one produces a deepening in fragmentation depth. Initial velocity and mass flux of the mixture are directly correlated with each other, inversely proportional to an increase in viscosity, except for the case in which a faster decompression rate is assumed. Taking into account up-to-date viscosity parameterization or input faster decompression rate, a much larger decrease in the average pressure along the conduit compared to previous studies is recorded, enhancing water exsolution and degassing. Disequilibrium degassing initiates only at very shallow conditions near the surface. Brittle fragmentation (i.e., depending on the strain rate criterion) in the pantelleritic Green Tuff eruption simulations is mainly a function of the initial temperature. In the case of the Etna 122 BC Plinian eruption, the viscosity strongly affects the magma ascent dynamics along the conduit. Using Confort 15, and therefore incorporating the most recent constitutive rheological parameterizations, we could calculate the mixture viscosity increase due to the presence of microlites. Results show that these seemingly low-viscosity magmas can explosively fragment in a brittle manner. Mass fluxes resulting from simulations which better represent the natural case (i.e., microlite-bearing) are consistent with values found in the literature for Plinian eruptions (~106 kg/s). The disequilibrium simulations, both for Green Tuff and Etna 122 BC eruptions, indicate that overpressure sufficient for fragmentation (if present) occurs only at very shallow conditions near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alfano F, Bonadonna C, Gurioli L (2012) Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaitén eruption. Bull Volcanol 74:2095–2108. doi:10.1007/s00445-012-0648-3

    Article  Google Scholar 

  • Alidibirov MA (1994) A model for viscous magma fragmentation during volcanic blasts. Bull Volcanol 56:459–465. doi:10.1007/BF00302827

    Article  Google Scholar 

  • Bagdassarov NS, Dingwell DB (1992) A rheological investigation of vesicular rhyolite. J Volcanol Geotherm Res 50:307–322

    Article  Google Scholar 

  • Bagdassarov NS, Dingwell DB (1993) Deformation of foamed rhyolites under internal and external stresses: an experimental investigation. Bull Volcanol 55:147–154

    Article  Google Scholar 

  • Bagdassarov NS, Dorfman A, Dingwell DB (2000) Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. Am Mineral 85:33–40

    Article  Google Scholar 

  • Bottinga Y, Weill D (1970) Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am J Sci 269:169–182

    Article  Google Scholar 

  • Bursik MI, Woods AW (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58:175–193. doi:10.1007/s004450050134

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Caricchi L, Giordano D, Burlini L, Ulmer P, Romano C (2008) Rheological properties of magma from the 1538 eruption of Monte Nuovo (Phlegrean Fields, Italy): an experimental study. Chem Geol 256:158–171. doi:10.1016/j.chemgeo.2008.06.035

    Article  Google Scholar 

  • Catalano S, Tortorici L, Viccaro M (2014) Regional tectonic control on large size explosive eruptions: Insights into the Green Tuff ignimbrite unit of Pantelleria. J Geodyn 73:23–33. doi:10.1016/j.jog.2013.10.008

    Article  Google Scholar 

  • Civetta L, D’Antonio M, Orsi G, Tilton GR (1998) The geochemistry of volcanic rocks from Pantelleria Island, sicily channel: petrogenesis and characteristics of the mantle source region. J Petrol 39:1453–1491. doi:10.1093/petroj/39.8.1453

    Article  Google Scholar 

  • Civile D, Lodolo E, Tortorici L, Lanzafame G, Brancolini G (2008) Relationships between magmatism and tectonics in a continental rift: The Pantelleria Island region (Sicily Channel, Italy). Mar Geol 251:32–46. doi:10.1016/j.margeo.2008.01.009

    Article  Google Scholar 

  • Cluzel N, Laporte D, Provost A, Kannewischer I (2008) Kinetics of heterogeneous bubble nucleation in rhyolitic melts: implications for the number density of bubbles in volcanic conduits and for pumice textures. Contrib Mineral Petrol 156:745–763

    Article  Google Scholar 

  • Coltelli M, Del Carlo P, Vezzoli L (1998) Discovery of a Plinian basaltic eruption of Roman age at Etna volcano, Italy. Geology 26:1095–1098

    Article  Google Scholar 

  • Cordonnier B, Hess KU, Lavallée Y, Dingwell DB (2009) Rheological properties of dome lavas: Case study of Unzen volcano. Earth Planet Sci Lett 279:263–272. doi:10.1016/j.epsl.2009.01.014

    Article  Google Scholar 

  • Costa A, Melnik O, Vedeneeva E (2007) Thermal effects during magma ascent in conduits. J Geophys Res 112:1–16. doi:10.1029/2007jb004985

    Article  Google Scholar 

  • Costa A, Caricchi L, Bagdassarov NS (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosyst 10:1–13. doi:10.1029/2008gc002138

    Article  Google Scholar 

  • Costantini L, Bonadonna C, Houghton BF, Wehrmann H (2009) New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua. Bull Volcanol 71:337–355. doi:10.1007/S00445-008-0227-9

    Article  Google Scholar 

  • Costantini L, Houghton BF, Bonadonna C (2010) Constraints on eruption dynamics of basaltic explosive activity derived from chemical and microtextural study: The example of the Fontana Lapilli Plinian eruption, Nicaragua. J Volcanol Geotherm Res 189:207–224. doi:10.1016/j.jvolgeores.2009.11.008

    Article  Google Scholar 

  • D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallization. Bull Volcanol 67:601–621. doi:10.1007/s00445-004-0397-z

    Article  Google Scholar 

  • de’ Michieli Vitturi M, Clarke AB, Neri A, Voight B (2010) Transient effects of magma ascent dynamics along a geometrically variable dome-feeding conduit. Earth Planet Sci Lett 295:541–553. doi:10.1016/j.epsl.2010.04.029

    Article  Google Scholar 

  • Del Carlo P, Pompilio M (2004) The relationship between volatile content and the eruptive style of basaltic magma: the Etna case. Ann Geophys 47:1–10

    Google Scholar 

  • Dellino P, Isaia R, La Volpe L, Orsi G (2004) Interaction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy). J Volcanol Geotherm Res 133:193–210. doi:10.1016/S0377-0273(03)00398-6

    Article  Google Scholar 

  • Dellino P, Dioguardi F, Zimanowski B, Büttner R, Mele D, La Volpe L, Sulpizio R, Doronzo DM, Sonder I, Bonasia R, Calvari S, Marotta E (2010) Conduit flow experiments help constraining the regime of explosive eruptions. J Geophys Res 115:1–17. doi:10.1029/2009JB006781

    Article  Google Scholar 

  • Di Carlo I, Rotolo SG, Scaillet B, Buccheri V, Pichavant M (2010) Phase equilibrium constraints on pre-eruptive conditions of recent felsic explosive volcanism at Pantelleria Island, Italy. J Petrol 51:2245–2276. doi:10.1093/petrology/egq055

    Article  Google Scholar 

  • Di Genova D, Romano C, Hess KU, Vona A, Poe BT, Giordano D, Dingwell DB, Behrens H (2013) The rheology of peralkaline rhyolites from Pantelleria Island. J Volcanol Geotherm Res 249:201–216. doi:10.1016/j.jvolgeores.2012.10.017

    Article  Google Scholar 

  • Dingwell DB, Webb S (1989) Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes. Phys Chem Miner. doi:10.1007/BF00197020

    Google Scholar 

  • Dingwell DB, Romano C, Hess KU (1996) The effect of water on the viscosity of a haplogranitic melt under P-T-X conditions relevant to silicic volcanism. Contrib Mineral Petrol 124:19–28. doi:10.1007/s004100050170

    Article  Google Scholar 

  • Dioguardi F, Dellino P, de Lorenzo S (2013) Integration of large-scale experiments and numerical simulations for the calibration of friction laws in volcanic conduit flows. J Volcanol Geotherm Res 250:75–90. doi:10.1016/j.jvolgeores.2012.09.011

    Article  Google Scholar 

  • Dobran F (1992) Nonequilibrium flow in volcanic conduits and application to the eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79. J Volcanol Geotherm Res 49:285–311. doi:10.1016/0377-0273(92)90019-A

    Article  Google Scholar 

  • Freda C, Gaeta M, Giaccio B, Marra F, Palladino D, Scarlato P, Sottili G (2010) CO2-driven large mafic explosive eruptions: the Pozzolane Rosse case study from the Colli Albani Volcanic District (Italy). Bull Volcanol 73:241–256. doi:10.1007/s00445-010-0406-3

    Article  Google Scholar 

  • Gardner JE, Ketcham RA (2011) Bubble nucleation in rhyolite and dacite melts: temperature dependence of surface tension. Contrib Mineral Petrol 162:929–943. doi:10.1007/s00410-011-0632-5

    Article  Google Scholar 

  • Gardner JE, Thomas R, Jaupart C, Tait S (1996) Fragmentation of magma during Plinian volcanic eruptions. Bull Volcanol 58:144–162

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212. doi:10.1007/BF00307281

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134. doi:10.1016/j.epsl.2008.03.038

    Article  Google Scholar 

  • Goepfert K, Gardner JE (2010) Influence of pre-eruptive storage conditions and volatile contents on explosive Plinian style eruptions of basic magma. Bull Volcanol 72:511–521. doi:10.1007/s00445-010-0343-1

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2007) The Fluid Mechanics Inside a Volcano. Annu Rev Fluid Mech 39:321–356. doi:10.1146/annurev.fluid.39.050905.110207

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2012) Dynamics of magma ascent in the volcanic conduit. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes, the physics and mathematics of volcanism. Cambridge University Press, pp 55–84

  • Haar L, Gallagher J, Kell G (1984) NBS/NRC steam tables: thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units. Hemispheres Publishing, Washington

    Google Scholar 

  • Hess KU, Dingwell DB (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300

    Google Scholar 

  • Houghton BF, Wilson L (1989) A vesicularity index for pyroclastics deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Del Carlo P, Coltelli M, Sable JE, Carey RJ (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC. J Volcanol Geotherm Res 137:1–14. doi:10.1016/j.jvolgeores.2004.05.009

    Article  Google Scholar 

  • Hurwitz S, Navon O (1994) Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content. Earth Planet Sci Lett 122:267–280. doi:10.1016/0012-821X(94)90001-9

    Article  Google Scholar 

  • Iacono Marziano G, Gaillard F, Pichavant M (2007) Limestone assimilation and the origin of CO2 emissions at the Alban Hills (Central Italy): Constraints from experimental petrology. J Volcanol Geotherm Res 166:91–105. doi:10.1016/j.jvolgeores.2007.07.001

    Article  Google Scholar 

  • Iacovino K, Moore G, Roggensack K, Oppenheimer C, Kyle P (2013) H2O–CO2 solubility in mafic alkaline magma: applications to volatile sources and degassing behavior at Erebus volcano, Antarctica. Contrib Mineral Petrol 166:845–860. doi:10.1007/s00410-013-0877-2

    Article  Google Scholar 

  • Ishibashi H (2009) Non-Newtonian behavior of plagioclase-bearing basaltic magma: Subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan. J Volcanol Geotherm Res 181:78–88. doi:10.1016/j.jvolgeores.2009.01.004

    Article  Google Scholar 

  • Ishibashi H, Sato H (2007) Viscosity measurements of subliquidus magmas: Alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan. J Volcanol Geotherm Res 160:223–238. doi:10.1016/j.jvolgeores.2006.10.001

    Article  Google Scholar 

  • Kawaguchi R, Nishimura T, Sato H (2013) Volcano inflation prior to an eruption: Numerical simulations based on a 1-D magma flow model in an open conduit. Earth Planets Space 65:1477–1489. doi:10.5047/eps.2013.05.005

    Article  Google Scholar 

  • Klug C, Cashman KV, Bacon CR (2002) Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake). Or Bull Volcanol 64:486–501. doi:10.1007/s00445-002-0230-5

    Article  Google Scholar 

  • Lanzo G, Landi P, Rotolo SG (2013) Volatiles in pantellerite magmas: a case study of the Green Tuff Plinian eruption (Island of Pantelleria, Italy). J Volcanol Geotherm Res 262:153–163. doi:10.1016/j.jvolgeores.2013.06.011

    Article  Google Scholar 

  • Lavallée Y, Hess KU, Cordonnier B, Dingwell DB (2007) Non-Newtonian rheological law for highly crystalline dome lavas. Geology 35:843–846. doi:10.1130/G23594A.1

  • Legros F, Kelfoun K (2000) Sustained blasts during large volcanic eruptions. Geology 28(10):895–898. doi:10.1130/0091-7613(2000)28<895:sbdlve>2.0.co;2

    Article  Google Scholar 

  • Lejeune A, Richet P (1995) Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J Geophys Res 100:4215–4229

    Article  Google Scholar 

  • Lensky NG, Navon O, Lyakhovsky V (2004) Bubble growth during decompression of magma: experimental and theoretical investigation. J Volcanol Geotherm Res 129:7–22

    Article  Google Scholar 

  • Lev E, Spiegelman M, Wysocki RJ, Karson JA (2012) Investigating lava fl ow rheology using video analysis and numerical flow models. J Volcanol Geotherm Res 247–248:62–73. doi:10.1016/j.jvolgeores.2012.08.002

    Article  Google Scholar 

  • Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143:205–217. doi:10.1016/j.jvolgeores.2004.09.018

    Article  Google Scholar 

  • Mader HM, Llewellin EW, Müller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158. doi:10.1016/j.jvolgeores.2013.02.014

    Article  Google Scholar 

  • Mahood GA (1984) Pyroclastic rocks and calderas associated with strongly peralkaline magmatism. J Geophys Res 89:8540. doi:10.1029/JB089iB10p08540

    Article  Google Scholar 

  • Mangan M, Sisson T (2000) Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet Sci Lett 183:441–455

    Article  Google Scholar 

  • Mangan M, Mastin LG, Sisson T (2004) Gas evolution in eruptive conduits: combining insights from high temperature and pressure decompression experiments with steady-state flow modeling. J Volcanol Geotherm Res 129:23–36. doi:10.1016/s0377-0273(03)00230-0

    Article  Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78:85–98

    Article  Google Scholar 

  • Massol H, Koyaguchi T (2005) The effect of magma flow on nucleation of gas bubbles in a volcanic conduit. J Volcanol Geotherm Res 143:69–88. doi:10.1016/j.jvolgeores.2004.09.011

    Article  Google Scholar 

  • Massol H, Jaupart C, Pepper DW (2001) Ascent and decompression of viscous vesicular magma in a volcanic conduit. J Geophys Res 106:16223–16240

    Article  Google Scholar 

  • Mastin LG (1995) A numerical program for steady-state flow of Hawaiian magma-gas mixtures through vertical eruptive conduits. U. S. Geological Survey Open File Report 95-756

  • Mastin LG (2002) Insights into volcanic conduit flow from an open-source numerical model. Geochem Geophys Geosyst 3:1–18

    Article  Google Scholar 

  • Mastin LG, Ghiorso M (2000) A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. U. S. Geological Survey Open File Report 00-209

  • Maxwell J (1866) On the dynamical theory of gases. J Proc Royal Soc London 15:167–171

  • Melnik O (2000) Dynamics of two-phase conduit flow of high-viscosity gas-saturated magma: large variations of sustained explosive eruption intensity. Bull Volcanol 62:153–170

    Article  Google Scholar 

  • Moitra P, Gonnermann HM, Houghton BF, Giachetti T (2013) Relating vesicle shapes in pyroclasts to eruption styles. Bull Volcanol 75:691. doi:10.1007/s00445-013-0691-8

    Article  Google Scholar 

  • Mourtada-Bonnefoi CC, Laporte D (2004) Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate. Earth Planet Sci Lett 218:521–537

    Article  Google Scholar 

  • Neave DA, Fabbro G, Herd RA, Petrone CM, Edmonds M (2012) Melting, differentiation and degassing at the Pantelleria volcano, Italy. J Petrol 53:637–663. doi:10.1093/petrology/egr074

    Article  Google Scholar 

  • Neri A, Papale P, Macedonio G (1998) The role of magma composition and water content in explosive eruptions: 2. Pyroclastic dispersion dynamics. J Volcanol Geotherm Res 87:95–115. doi:10.1016/S0377-0273(98)00102-4

    Article  Google Scholar 

  • Orsi G, Sheridan MF (1984) The Green Tuff of Pantelleria : rheoignimbrite or rheomorphic fall? Bull Volcanol 47:611–626

    Article  Google Scholar 

  • Papale P (1999) Strain-induced magma fragmentation in explosive eruptions. Nature 397:425–428

    Article  Google Scholar 

  • Papale P, Neri A, Macedonio G (1998) The role of magma composition and water content in explosive eruptions 1. Conduit ascent dynamics. J Volcanol Geotherm Res 87:75–93

    Article  Google Scholar 

  • Patanè D, Aiuppa A, Aloisi M, Behncke B, Cannata A, Coltelli M, Di Grazia G, Gambino S, Gurrieri S, Mattia M, Salerno G (2013) Insights into magma and fluid transfer at Mount Etna by a multiparametric approach: A model of the events leading to the 2011 eruptive cycle. J Geophys Res Solid Earth 118:3519–3539. doi:10.1002/jgrb.50248

    Article  Google Scholar 

  • Pérez W, Freundt A (2006) The youngest highly explosive basaltic eruptions from Masaya Caldera (Nicaragua): stratigraphy and hazard assessment. Geol Soc Am Spec Pap 412:189–207

    Google Scholar 

  • Picard D, Arbaret L, Pichavant M, Champallier R, Launeau P (2011) Rheology and microstructure of experimentally deformed plagioclase suspensions. Geology 39:747–750. doi:10.1130/G32217.1

    Article  Google Scholar 

  • Picard D, Arbaret L, Pichavant M, Champallier R, Launeau P (2013) The rheological transition in plagioclase-bearing magmas. J Geophys Res Solid Earth 118:1363–1377. doi:10.1002/jgrb.50091

    Article  Google Scholar 

  • Polacci M, Papale P, Del Seppia D, Giordano D, Romano C (2004) Dynamics of magma ascent and fragmentation in trachytic versus rhyolitic eruptions. J Volcanol Geotherm Res 131:93–108. doi:10.1016/S0377-0273(03)00319-6

    Article  Google Scholar 

  • Pyle DM (1995) Assessment of the minimum volume of tephra fall deposits. J Volcanol Geotherm Res 69:379–382

    Article  Google Scholar 

  • Sable JE, Houghton BF, Del Carlo P, Coltelli M (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: Evidence from clast microtextures. J Volcanol Geotherm Res 158:333–354. doi:10.1016/j.jvolgeores.2006.07.006

    Article  Google Scholar 

  • Sable JE, Houghton BF, Wilson CJN, Carey RJ (2009) Eruption mechanisms during the climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural characteristics of the deposits. Geol Soc Lond Spec Publ IAVCEI 2:129–154

    Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272:870–893

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010a) Textural studies of vesicles in volcanic rocks: An integrated methodology. J Volcanol Geotherm Res 190:271–289. doi:10.1016/j.jvolgeores.2009.12.003

    Article  Google Scholar 

  • Shea T, Gurioli L, Larsen JF, Houghton BF, Hammer JE, Cashman KV (2010b) Linking experimental and natural vesicle textures in Vesuvius 79AD white pumice. J Volcanol Geotherm Res 192:69–84. doi:10.1016/j.jvolgeores.2010.02.013

    Article  Google Scholar 

  • Shea T, Gurioli L, Houghton BF, Cioni R, Cashman KV (2011) Column collapse and generation of pyroclastic density currents during the A.D. 79 eruption of Vesuvius: The role of pyroclast density. Geology 39:695–698. doi:10.1130/G32092.1

    Article  Google Scholar 

  • Shea T, Hammer JE, First E (2013) Magma balloons or bombs? Nat Geosci 6:802–803. doi:10.1038/NGEO1971

    Article  Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37

    Article  Google Scholar 

  • Sparks RSJ, Wilson L (1982) Explosive volcanic eruptions—V. Observations of plume dynamics during the 1979 Soufrière eruption, St Vincent. Geophys J Int 69:551–570

    Article  Google Scholar 

  • Speranza F, Di Chiara A, Rotolo SG (2011) Correlation of welded ignimbrites on Pantelleria (Strait of Sicily) using paleomagnetism. Bull Volcanol 74:341–357. doi:10.1007/s00445-011-0521-9

    Article  Google Scholar 

  • Spieler O, Kennedy B, Kueppers U, Dingwell DB, Scheu B, Taddeucci J (2004) The fragmentation threshold of pyroclastic rocks. Earth Planet Sci Lett 226:139–148. doi:10.1016/j.epsl.2004.07.016

    Article  Google Scholar 

  • Stevenson RJ, Wilson L (1997) Physical volcanology and eruption dynamics of peralkaline agglutinates from Pantelleria. J Volcanol Geotherm Res 79(1–2):97–122

    Article  Google Scholar 

  • Toramaru A (1995) Numerical study of nucleation and growth of bubbles in viscous magmas. J Geophys Res 100:1913–1931

    Article  Google Scholar 

  • Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geotherm Res 154:303–316. doi:10.1016/j.jvolgeores.2006.03.027

    Article  Google Scholar 

  • Valentine G, Wohletz K (1989) Numerical models of Plinian eruption columns and pyroclastic flows. J Geophys Res 94:1867–1887

    Article  Google Scholar 

  • Vona A, Romano C, Dingwell DB, Giordano D (2011) The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim Cosmochim Acta 75:3214–3236. doi:10.1016/j.gca.2011.03.031

    Article  Google Scholar 

  • Vona A, Romano C, Giordano D, Russell JK (2013) The multiphase rheology of magmas from Monte Nuovo (Campi Flegrei, Italy). Chem Geol 346:213–227. doi:10.1016/j.chemgeo.2012.10.005

    Article  Google Scholar 

  • Walker G, Self S, Wilson L (1984) Tarawera 1886, New Zealand—a basaltic plinian fissure eruption. J Volcanol Geotherm Res 21:61–78

    Article  Google Scholar 

  • Wehrmann H, Bonadonna C, Freundt A, Houghton BF, Kutterolf S (2006) Fontana Tephra: a basaltic Plinian eruption in Nicaragua. Geol Soc Am Spec Pap 482:209–223

    Google Scholar 

  • White JC, Parker DF, Ren M (2009) The origin of trachyte and pantellerite from Pantelleria, Italy: insights from major element, trace element, and thermodynamic modelling. J Volcanol Geotherm Res 179:33–55. doi:10.1016/j.jvolgeores.2008.10.007

    Article  Google Scholar 

  • Williams R (2010) Emplacement of radial pyroclastic density currents over irregular topography : the chemically-zoned, low aspect-ratio Green tuff ignimbite, Pantelleria, Italy. Ph.D. thesis, University of Leicester, pp 232

  • Williams R, Branney MJ, Barry TL (2013) Temporal and spatial evolution of a waxing then waning catastrophic density current revealed by chemical mapping. Geology 42:107–110. doi:10.1130/G34830.1

    Article  Google Scholar 

  • Wilson L, Sparks RSJ, Huang TC, Watkins ND (1978) The control of volcanic column heights by eruption energetics and dynamics ash. J Geophys Res 83:1829–1836

  • Wilson L, Sparks RSJ, Walker D (1980) Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption behaviour. Geophys J R Astron Soc 63:117–148

    Article  Google Scholar 

  • Wolff JA, Wright JV (1981) Formation of the Green Tuff, Pantelleria. Bull Volcanol 44:681–690. doi:10.1007/BF02597091

    Article  Google Scholar 

  • Zhang Y, Behrens H (2000) H2O diffusion in rhyolitic melts and glasses. Chem Geol 169:243–262. doi:10.1016/S0009-2541(99)00231-4

    Article  Google Scholar 

  • Zhang Y, Ni H (2010) Diffusion of H, C, and O components in silicate melts. Rev Mineral Geochem 72:171–225. doi:10.2138/rmg.2010.72.5

    Article  Google Scholar 

Download references

Acknowledgments

We thank Heather Wright for her careful and thorough review which greatly helped improving the manuscript. We are grateful to Atsushi Toramaru and Thomas Shea for the assistance with decompression rate calculations. We like to thank Marco Viccaro for providing some Pantelleria samples. We thank Chiara Montagna and an anonymous reviewer for supporting comments on an earlier version of this manuscript. Thomas Giachetti and an anonymous reviewer are also acknowledged for their constructive and careful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Campagnola.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campagnola, S., Romano, C., Mastin, L.G. et al. Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions. Contrib Mineral Petrol 171, 60 (2016). https://doi.org/10.1007/s00410-016-1265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1265-5

Keywords

Navigation