Skip to main content
Log in

Hydrodynamic aspects of explosive eruptions of volcanoes: simulation problems

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The paper offers a short survey of experimental results on simulation of processes of explosive volcano eruptions, based on the method of hydrodynamic pulse shock tubes. The experiments show that the development of cavitation in the magma under the effect of decompression waves is characterized by the formation of bubbly clusters and their transformation into a system of arbitrary distributed slugs as a result of bubble coalescence. As a consequence, the magma flow turns out to be stratified into a system of vertical jets of spatial form, which then disintegrate into individual fragments. An unsteady multiphase mathematical model is created to study the dynamics of the magma state at the initial stage of the explosive eruption. This model takes into account nucleation and diffusive processes, gravity, and dynamically changing viscosity. The results of numerical studies performed within the framework of this model showed that the magma state in 6–7 s (after the beginning of decompression) is characterized by the flow glass transition, if the processes of bubble coalescence are ignored. The flow includes “frozen-in” 0.3-mm-thick bubbles, and the magma viscosity increases by 6–7 orders in the degassing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woods Andrew W.: The dynamics of explosive volcanic eruptions. Rev. Geophy. 33(4), 495–530 (1995)

    Article  Google Scholar 

  2. Gonnermann, H.M., Manga, M.: Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426(Nov. 27):432–435. http://dx.doi.org/10.1038/nature02138 (2003)

  3. Gilbert, J.S., Sparks, R.S.J. (eds.): The physics of explosive volcanic eruptions, Geological Society, London, Special Publications, vol. 145 (1998)

  4. Manga, M., Gonnermann, H.M., Namiki, A.: Why do volcanoes (only sometimes) erupt explosively? Canadian Geophysical Union and American Geophysical Union meeting. May 17–21. Montreal. Abstract (2004)

  5. Taddeucci, J., et al.: Vesiculation, flow, and fragmentation of viscoelastic magma: Inferences from an American toy. Canadian Geophysical Union and American Geophysical Union meeting. May 17–21. Montreal. Abstract (2004)

  6. Mader, H.: In: Gilbert, J.S., Sparks, R.S.J.(eds.) The physics of explosive volcanic eruptions. Geological Society, London, Special Publications, vol. 145 (1998)

  7. Glass I.I., Heuckroth L.E.: Hydrodynamic shock tube. Phys. Fluids 6(4), 543–549 (1963)

    Article  MATH  Google Scholar 

  8. Taddeucci, J., et al.: Experimental and analytical modeling of basaltic ash explosions at Mount Etna, Italy, 2001. J. Geophys. Res. (Solid Earth) 109(Aug. 10), B08203. http://dx.doi.org/10.1029/2003JB002952 (2004)

  9. Johnson, J.B., Proussevitch, A., Sahagian, D.: Modeling transient eruptive processes. Canadian Geophysical Union and American Geophysical Union meeting. May 17–21. Montreal. Abstract (2004)

  10. Rust, A.C., Cashman, K.V., Wearn, K.M.: Degassing and fragmentation in sustained vs. episodic eruptions: Evidence from pyroclastic obsidian. Canadian Geophysical Union and American Geophysical Union meeting. May 17–21. Montreal. Abstract (2004)

  11. Sahagian, D.: Volcanic eruption mechanisms: Insights from intercomparison of models of conduit processes. Canadian Geophysical Union and American Geophysical Union meeting. May 17–21. Montreal. Abstract (2004)

  12. Eichelberger, J., et al.: A Russian-Japan-US Partnership to understand explosive volcanism. http://www.kscnet.ru/conference/sovbes/agenda/cvs

  13. Hill D., Pollitz F.: Ch. Newhall Earthquake-volcano interactions. Phys. Today 55, 41–47 (2002)

    Article  Google Scholar 

  14. Vorotnikova M.I., Kedrinskii V.K., Soloukhin R.I.: Shock tube for investigating one-dimensional waves in liquids. Combustion Explosion Shock Waves 1(1), 3–9 (1965)

    Article  Google Scholar 

  15. Gerst, A., et al.: The First Second of a Strombolian Eruption: Velocity Observations at Erebus Volcano, Antarctica. EOS Trans. AGU, 87(52), Fall Meet. Suppl., Abstract V31G-04 (2006)

  16. Mattox T.N., Mangan M.T.: Littoral hydrovolcanic explosions: a case study of lava—seawater interaction at Kilauea Volcano. J. Volcanol. Geotherm. Res. 75, 1–17 (1994)

    Article  Google Scholar 

  17. Dobran F.: Non-equilibrium flow in volcanic conduits and application of the eruption of Mt. St. Helens on May 18, 1980 and Vesuvius in Ad. 79. J. Volcanol. Geotherm. Res. 49, 285–311 (1992)

    Article  Google Scholar 

  18. Kedrinskii V.K.: Nonlinear problems of cavitation breakdown of liquids under explosive loading (review). J. Appl. Mech. Tech. Phys. 3, 361–377 (1993)

    Article  Google Scholar 

  19. Besov A.S., Kedrinskii V.K., Pal’chikov E.I.: Studying of initial stage of cavitation using diffraction-optical method. Pis’ma Zh. Exp. Teor. Fiz. 10(4), 240–244 (1944)

    Google Scholar 

  20. Kedrinskii, V.K.: On relaxation of tensile stresses in cavitating liquid, In: Pravica, P. (ed.) Proc. of 13th Int. Congress on Acoustics, vol. 1 (Dragan Srnic Press, Sabac), pp. 327–330 (1989)

  21. Kedrinskii V.K., Besov A.S., Gutnik I.E.: Inversion of two-phase state of a liquid at pulse loading. Doklady Phys. 352(4), 477–479 (1997)

    Google Scholar 

  22. Davydov, M.N.: Mathematical simulation of cavitation clusters development in a liquid under pulse loading. Ph.D. Thesis, Lavrentyev Institute of Hydrodynamics, Sib. Branch, the Russian Academy of Sciences, Novosibirsk (2006)

  23. Kedrinskii V.K., Makarov A.I., Stebnovsky S.V., Takayama K.: Explosive volcanic eruption: some approaches to simulation. Combustion Explosion Shock Waves 41(6), 193–201 (2005)

    Article  Google Scholar 

  24. Wilson L.: Relationships between pressure, volatile content, and eject in three types of volcanic explosion. J. Volcanol. Geotherm. Res. 8, 297–313 (1980)

    Article  Google Scholar 

  25. Slezin, Yu.B.: Mechanism of Volcanic Eruptions (Steady Model) (in Russian). Nauchnyi Mir, Moscow (1998)

  26. Papale P., Neri A., Macedorio G.: The role of magma composition and water content in explosive eruptions. 1. Conduit ascent dynamics. J. Volcanol. Geotherm. Res. 87, 75–93 (1998)

    Article  Google Scholar 

  27. Barmin A.A., Mel’nik O.E.: Hydrodynamics of volcanic eruptions. Usp. Mekh. 1, 32–60 (2002)

    Google Scholar 

  28. Lyakhovsky V., Hurwitz S., Navon O.: Bubble growth in rhyolitic melts: experimental and numerical investigation. Bull. Volcanol. 58(1), 19–32 (1996)

    Article  Google Scholar 

  29. Navon O., Chekhmir A., Lyakhovsky V.: Bubble growth in highly viscous melts: theory, experiments, and autoexplosivity of dome lavas. Earth Planet. Sci. Lett. 160, 763–776 (1998)

    Article  Google Scholar 

  30. Proussevitch A.A., Sahagian D.L.: Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems. J. Geophys. Res. 101(8), 17447–17456 (1996)

    Article  Google Scholar 

  31. Proussevitch A.A., Sahagian D.L.: Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling. J. Geophys. Res. 103(B8), 18223–18251 (1998)

    Article  Google Scholar 

  32. Hort M.: Abrupt change in magma liquidus temperature because of volatile loss or magma mixing: Effects on nucleation, crystal growth and thermal history of the magma. J. Petrol. 39(5), 1063–1076 (1998)

    Article  Google Scholar 

  33. Chernov A.A.: A model of magma solidification during explosive volcanic eruptions. J. Appl. Mech. Tech. Phys. 44(5), 667–675 (2003)

    Article  Google Scholar 

  34. Stolper E.: Water in silicate glasses: An infrared spectroscopic study. Contrib. Mineral. Petrol. 81, 1–17 (1982)

    Article  Google Scholar 

  35. Kedrinskii V.K., Davydov M.N., Chernov A.A., Takayama K.: The initial stage of explosive volcanic eruption: the dynamics of the magma state in depression waves. Doklady Phys. 51(3), 140–143 (2006)

    Article  Google Scholar 

  36. Kedrinskii V.K.: Hydrodynamics of Explosion: Experiments and Models. Springer, Berlin (2005)

    Google Scholar 

  37. Persikov, E.S.: The viscosity of magmatic liquids: Experiment, generalized patterns. A model for calculation and prediction. Applications, Physical Chemistry of Magmas, vol. 9. Advances in Physical Geochemistry, pp. 1–40. Springer, New York (1991)

  38. Persikov E.S., Zharikov V.A., Bukhtiyarov P.G., Pol’skoy S.F.: The effect of volatiles on the properties of magmatic melts. Eur. J. Mineral. 2, 621–642 (1990)

    Google Scholar 

  39. Kolmogorov, A.N.: On the statistical theory of metal crystallization, Izv. Akad. Nauk SSSR, Ser. Mat., No. 3, pp. 355–359 (1937)

  40. Chernov A.A., Kedrinskii V.K., Davydov M.N.: Spontaneous nucleation of bubbles in a gas-saturated melt under instantaneous decompression. J. Appl. Mech. Tech. Phys. 45(2), 281–285 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kedrinskiy.

Additional information

Communicated by E. Timofeev.

This paper is based on the plenary lecture presented at the 26th International Symposium on Shock Waves, Göttingen, Germany, July 15–20, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kedrinskiy, V. Hydrodynamic aspects of explosive eruptions of volcanoes: simulation problems. Shock Waves 18, 451–464 (2009). https://doi.org/10.1007/s00193-008-0181-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0181-7

PACS

Navigation