Skip to main content
Log in

Optimization of the Parameters of Light-Induced Resistive Switching in Phthalocyanine Films

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

It is shown that the process of light-induced resistive switching in films based on macroheterocyclic dyes correlates with the spatial localization of molecular orbitals (center or periphery in a coordination compound). External-illumination-induced spatial redistribution of charges can both promote the formation of a conducting state and prevent its formation. The transition from solution to a film in samples under study occurs without a significant distortion of the energy spectrum of molecules; for this reason, numerical methods of calculation of orbitals in isolated molecules can be applied to films. The prediction of the response of a system to an external action significantly simplifies the choice of materials with desired properties for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Nalwa, Supramolecular Photosensitive and Electroactive Materials (Academic San Diego, 2001).

    Google Scholar 

  2. C. Wang, X. Chen, F. Chen, and J. Shao, Org. Electron. 66, 183 (2019).

    Article  Google Scholar 

  3. S. P. Palto, V. V. Lazarev, A. R. Geivandov, and S. G. Yudin, J. Exp. Theor. Phys. 133, 183 (2021).

    Article  ADS  Google Scholar 

  4. Y. Matsuo, K.Ogumi, I. Jeon, H. Wang, and T. Nakagawa, RSC Adv. 10, 32678 (2020).

    Article  ADS  Google Scholar 

  5. B. Das, M. Samanta, P. Sarkar, U. K. Ghorai, A. Mallik, and K. K. Chattopadhyay, Adv. Electron. Mater. 7, 2001079 (2021).

  6. U. Russo, D. Ielmini, C. Cagli, and A. Lacaita, IEEE Trans. Electron Dev. 56, 193 (2009).

    Article  ADS  Google Scholar 

  7. Q. Meng, X. He, Q. Mao, Y. Weng, J. Yang, D. Yan, and H. Zhao, Appl. Phys. Lett. 106, 173302 (2015).

  8. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

  9. Ch. Pearson, L. Bowen, M.-W. Lee, A. L. Fisher, K. E. Linton, M. R. Bryce, and M. C. Petty, Appl. Phys. Lett. 102, 213301 (2013).

  10. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, Nat. Commun. 3, 732 (2012).

    Article  ADS  Google Scholar 

  11. M.-J. Song, K.-H. Kwon, and J.-G. Park, Sci. Rep. 7, 3065 (2017).

    Article  ADS  Google Scholar 

  12. J.-Y. Chen, Ch.-L. Hsin, Ch.-W. Huang, Ch.-H. Chiu, Y.-T. Huang, S.-J. Lin, W.-W. Wu, and L.-J. Chen, Nano Lett. 13, 3671 (2013).

    Article  ADS  Google Scholar 

  13. K. A. Drozdov, I. V. Krylov, V. A. Vasilik, A. D. Kosov, T. V. Dubinina, L. I. Ryabova, and D. R. Khokhlov, Semiconductors 55, 296 (2021).

    Article  ADS  Google Scholar 

  14. M. S. Kotova, K. A. Drozdov, T. V. Dubinina, E. A. Kuz-mina, L. G. Tomilova, R. B. Vasiliev, A. O. Dudnik, L. I. Ryabova, and D. R. Khokhlov, Sci. Rep. 8, 9080 (2018).

    Article  ADS  Google Scholar 

  15. F. Zhou, Z. Zhou, J. Chen, T. H. Choy, J. Wang, N. Zhang, Z. Lin, Sh. Yu, J. Kang, H.-S. Ph. Wong, and Y. Chai, Nat. Nanotechnol. 14, 776 (2019).

    Article  Google Scholar 

  16. Y. Zhou, K. S. Yew, D. S. Ang, T. Kawashima, M. K. Bera, H. Z. Zhang, and G. Bersuker, Appl. Phys. Lett. 107, 072107 (2015).

  17. M. Bouvet and J. Simon, Chem. Phys. Lett. 172, 299 (1990).

    Article  ADS  Google Scholar 

  18. A. D. Kosov, T. V. Dubinina, N. E. Borisova, A. V. Ivanov, K. A. Drozdov, S. A. Trashin, K. DeWael, M. S. Kotova, and L. G. Tomilova, New J. Chem. 43, 3153 (2019).

    Article  Google Scholar 

  19. T. V. Dubinina, M. M. Osipova, A. V. Zasedatelev, V. I. Krasovskii, N. E. Borisova, S. A. Trashin, L. G. Tomilova, and N. S. Zefirov, Dyes Pigm. 128, 141 (2016).

    Article  Google Scholar 

  20. T. V. Dubinina, A. D. Kosov, E. F. Petrusevich, S. S. Maklakov, N. E. Borisova, L. G. Tomilova, and N. S. Zefirov, Dalton Trans. 44, 7973 (2015).

    Article  Google Scholar 

  21. M. Kasha, H. Rawls, and M. El-Bayoumi, Pure Appl. Chem. 11, 371 (1965).

    Article  Google Scholar 

  22. T. Nyokong, Struct. Bond. 135, 45 (2010).

    Article  Google Scholar 

  23. M. Más-Montoya and R. Janssen, Adv. Funct. Mater. 27, 1605779 (2017).

  24. N. Kobayashi, T. Ishizaki, K. Ishii, and H. Konami, J. Am. Chem. Soc. 121, 9096 (1999).

    Article  Google Scholar 

  25. K. Katoh, S. Yamashita, N. Yasuda, Y. Kitagawa, B. K. Breedlove, Y. Nakazawa, and M. Yamashita, Angew. Chem. Int. Ed. 57, 9262 (2018).

    Article  Google Scholar 

  26. V. Novakova, M. P. Donzello, C. Ercolani, P. Zimcik, and P. A. Stuzhin, Coord. Chem. Rev. 361, 1 (2018).

    Article  Google Scholar 

  27. N. Ishikawa, O. Ohno, and Y. Kaizu, Chem. Phys. Lett. 180, 51 (1991).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-32-70118. The characterization of films was supported by the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools, project no. MK-1056.2020.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Drozdov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, K.A., Krylov, I.V., Vasilik, V.A. et al. Optimization of the Parameters of Light-Induced Resistive Switching in Phthalocyanine Films. Jetp Lett. 114, 674–680 (2021). https://doi.org/10.1134/S0021364021230065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021230065

Navigation