Skip to main content
Log in

Cooperative Transport of a Nonwetting Liquid in a Random System of Pores

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

A new mechanism has been proposed for the cooperative transport of a nonwetting liquid in a nanoporous medium. The description of transport is based on the theory of critical dynamics of multiscale phenomena in atomic systems. Transport is described as a time-multiscale process of interaction of a fluctuating filling–escape mode, macroscopic spontaneous filling mode, and filling mode caused by the critical pressure of compression of a dynamic percolation transition. The model is based on the solution of the system of kinetic equations for the distribution function of accessible and filled pores, which allows calculating macroscopic quantities describing processes at various time scales. A case where macroscopic transport modes are developed simultaneously in two different time scales is considered. A “nanoscopic” model of filling of nanopores under the development of the spontaneous mode taking into account the conservation of the volume of the suspension at the equality of rates of development of the modes at different time scales has been proposed. The predicted time dependences of the flux and volume of filled pores correspond to dissipationless transport in the system of nanopores. Theoretical dependences describe known and new experimental data. Unusual dynamic properties correspond to the properties of systems with positive feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. In [16], the equation \(\dot {A} \sim A\left( {1 - A} \right)\) was obtained for the opposite case of a small time of increasing pressure when \({{\tau }_{P}} \ll {{\tau }_{V}}\).

REFERENCES

  1. X. Gao, G. Ji, S. Bhatia, and D. Nicholson, Processes 7, 14 (2019).

    Article  Google Scholar 

  2. G. Fraux, F. Coudert, A. Boutin, and A. H. Fuchs, Chem. Soc. Rev. 46, 7421 (2017).

    Article  Google Scholar 

  3. T. V. Nizkaya, E. S. Asmolov, and O. I. Vinogradova, Phys. Rev. E 96, 033109 (2017).

    Article  ADS  Google Scholar 

  4. V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and P. N. Malyarenko, JETP Lett. 107, 569 (2018).

    Article  ADS  Google Scholar 

  5. V. A. Tkachenko, O. A. Tkachenko, G. M. Min’kov, and A. A. Sherstobitov, JETP Lett. 104, 473 (2016).

    Article  ADS  Google Scholar 

  6. F. D. Iudin, D. I. Iudin, and V. B. Kazantsev, JETP Lett. 101, 271 (2015).

    Article  ADS  Google Scholar 

  7. V. D. Borman, V. V. Teplyakov, V. N. Tronin, I. V. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 90, 950 (2000).

    Article  ADS  Google Scholar 

  8. V. D. Borman, V. N. Tronin, I. V. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 98, 102 (2004).

    Article  ADS  Google Scholar 

  9. F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, Phys. Rev. Lett. 102, 026001 (2009).

    Article  ADS  Google Scholar 

  10. M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nature (London, U. K.) 438 (7064), 44 (2005).

    Article  ADS  Google Scholar 

  11. J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Science (Washington, DC, U. S.) 312 (5776), 1034 (2006).

    Article  ADS  Google Scholar 

  12. B. Xu, Y. Qiao, and Xi Chen, J. Mech. Phys. Solids 62, 194 (2014).

    Article  ADS  Google Scholar 

  13. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, V. N. Tronin, and V. I. Troyan, JETP Lett. 95, 511 (2012).

    Article  ADS  Google Scholar 

  14. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, and V. N. Tronin, Phys. Rev. E 88, 052116 (2013).

    Article  ADS  Google Scholar 

  15. V. D. Borman, A. A. Belogorlov, and V. N. Tronin, Phys. Rev. E 93, 022142 (2016).

    Article  ADS  Google Scholar 

  16. V. D. Borman, A. A. Belogorlov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 108, 389 (2009).

    Article  ADS  Google Scholar 

  17. Y. Sun, Z. Guo, J. Xu, X. Xu, Ch. Liu, and Y. Li, Mater. Des. 66, 545 (2015).

    Article  Google Scholar 

  18. M. Li and W. Lu, Phys. Chem. Chem. Phys. 19, 17167 (2017).

    Article  Google Scholar 

  19. V. D. Borman, A. A. Belogorlov, and V. N. Tronin, Colloids Surf., A 537, 540 (2018).

    Article  Google Scholar 

  20. Sh.-k. Ma, Modern Theory of Critical Phenomena (Routledge, New York, 2000).

    Google Scholar 

  21. H. Haken, Synergetics (Springer, Berlin, 1983).

    Book  Google Scholar 

  22. H. A. Kramers, Physica (Amsterdam, Neth.) 7, 284 (1940).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-08-01003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Borman.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borman, V.D., Belogorlov, A.A. & Tronin, I.V. Cooperative Transport of a Nonwetting Liquid in a Random System of Pores. Jetp Lett. 113, 378–383 (2021). https://doi.org/10.1134/S0021364021060035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021060035

Navigation