Skip to main content
Log in

Anomalously slow relaxation of a nonwetting liquid in the disordered confinement of a nanoporous medium

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The time evolution of the water–disordered nanoporous medium Libersorb 23 (L23) system has been studied after complete filling at elevated pressure followed by full release of overpressure. It is established that relaxation of the L23 rapidly flows out during the overpressure relief time, following the variation in pressure. At a temperature below that of the dispersion transition (T < T d = 284 K), e.g., at T = 277 K, the degree of filling θ decreases from 1 to 0.8 within 10 s. The degree of filling varies with time according to the power law θ ~ t –α with the exponent α < 0.1 over a period of t ~ 105 s. This process corresponds to slow relaxation of a metastable state of a nonwetting liquid in a porous medium. At times t > 105 s, the metastable state exhibits decay, manifested as the transition to a power dependence of θ(t) with a larger exponent. The relaxation of the metastable state of nonwetting liquid in a disordered porous medium is described in the mean field approximation as a continuous sequence of metastable states with a barrier decreasing upon a decrease in the degree of filling. Using this approach, it is possible to qualitatively explain the observed relaxation process and crossover transition to the stage described by θ(t) with a larger exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Langer, Rep. Prog. Phys. 77, 042501 (2014).

    Article  ADS  Google Scholar 

  2. G. Biroli and J. Garrahan, J. Chem. Phys. 138, 12A301 (2013).

    Article  Google Scholar 

  3. F. H. Stillinger and P. G. Debenedetti, Annu. Rev. Condens. Matter Phys. 4, 263 (2013).

    Article  ADS  Google Scholar 

  4. J. S. Langer, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 85 (5), 051507 (2012).

    Article  ADS  Google Scholar 

  5. L. Berthier and G. Biroli, Rev. Mod. Phys. 83 (2), 587 (2011).

    Article  ADS  Google Scholar 

  6. H. Tanaka, Eur. Phys. J. E: Soft Matter Biol. Phys. 35, 113 (2012).

    Article  Google Scholar 

  7. H. Tanaka, N. Takeshi, H. Shintani, and K. Watanabe, Nat. Mater. 9, 324 (2010).

    Article  ADS  Google Scholar 

  8. W. Kob, S. Roldan-Vagras, and L. Berthier, Nat. Phys. 8, 164 (2012).

    Article  Google Scholar 

  9. J. S. Langer, arXiv:1501.07228v1 [cod-mat.mtrl-sci].

  10. W. Gotze, Complex Dynamics of Glass-Forming Liquids: A Mode Coupling Theory (Oxford University Press, Oxford, 2008).

    Book  Google Scholar 

  11. G. Biroli and J. P. Bouchaud, in Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, Ed. by P. G. Wolynes and V. Lubchenko (Wiley, New York, 2012).

  12. J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).

    Article  ADS  Google Scholar 

  13. E. Bouchbinder and J. S. Langer, Phys. Rev. Lett. 106 (14), 148301 (2011)

    Article  ADS  Google Scholar 

  14. E. Bouchbinder and J. S. Langer, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83 (6), 061503 (2011).

    Article  Google Scholar 

  15. A. Gavagna, N. S. Grigera, and P. Verrocchio, Phys. Rev. Lett. 98 (18), 187801 (2007).

    Article  ADS  Google Scholar 

  16. A. Ayadin, Ph. Germain, and S. Amokrane, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 84 (6), 061502 (2011).

    Article  Google Scholar 

  17. M. Mosayebi, E. Del Gado, P. Ilg, and H. C. Ottinger, Phys. Rev. Lett. 104, 205704 (2010).

    Article  ADS  Google Scholar 

  18. J. S. Langer, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 88, 012122 (2013).

    Article  ADS  Google Scholar 

  19. C. P. Royall, S. R. Williams, and H. Tanaka, arXiv:1409.5469v1 [cod-mat.mtrl-sci].

  20. A. M. Luo and M. Ch. Ottinger, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 89, 022137 (2014).

    Article  ADS  Google Scholar 

  21. V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).

    Article  ADS  Google Scholar 

  22. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, Ed. by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, Oxford, 2011).

    Google Scholar 

  23. M. Vasin, J. Stat. Mech. Theory Exp. 5, 05009 (2011).

    Article  Google Scholar 

  24. V. S. Dotsenko, Phys.—Usp. 36 (6), 455 (1993).

    Article  ADS  Google Scholar 

  25. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, V. N. Tronin, and V. I. Troyan, JETP Lett. 95 (10), 511 (2012).

    Article  ADS  Google Scholar 

  26. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, V. N. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 117 (6), 1139 (2013).

    Article  Google Scholar 

  27. V. D. Borman, A. A. Belogorlov, F. M. Grekhov, and V. N. Tronin, Phys. Lett. A 378, 2888 (2014).

    Article  ADS  Google Scholar 

  28. J. Russo and H. Tanaka, arXiv:1502.058v1 [cod-mat. mtrl-sci].

  29. T. Kawasaki and H. Tanaka, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 89, 062315 (2014).

    Article  Google Scholar 

  30. Y. Kumzerov, A. Nabereznov, S. Vakhrushev, and B. N. Savenko, Phys. Rev. B: Condens. Matter 52 (7), 4772 (1995).

    Article  ADS  Google Scholar 

  31. J. R. Edison and P. A. Monson, J. Low Temp. Phys. 157, 395 (2009).

    Article  ADS  Google Scholar 

  32. F. Porcheron, M. Thommes, R. Ahmad, and P. A. Monson, Langmuir 23 (6), 3372 (2007).

    Article  Google Scholar 

  33. V. D. Borman, F. M. Grekhov, and V. I. Troyan, J. Exp. Theor. Phys. 91 (1), 170 (2000).

    Article  ADS  Google Scholar 

  34. F. Porcheron, M. Thommes, R. Ahmad, and P. A. Monson, Langmuir 23 (6), 3372 (2007).

    Article  Google Scholar 

  35. A. Nan, X. Kong, and Y. Qiao, J. Appl. Phys. 100, 014308 (2006).

    Article  ADS  Google Scholar 

  36. Y. Qiao, G. Gao, and X. Chen, J. Am. Chem. Soc. 129, 2355 (2007).

    Article  Google Scholar 

  37. X. Kong and Y. Qiao, Appl. Phys. Lett. 86, 151919 (2004).

    Article  ADS  Google Scholar 

  38. F. V. Surani and Y. Qiao, J. Appl. Phys. 100, 034311 (2004).

    Article  ADS  Google Scholar 

  39. B. Xu, Y. Qiao, Y. Li, Q. Zhou, and X. Chen, Appl. Phys. Lett. 98, 221909 (2011).

    Article  ADS  Google Scholar 

  40. A. Han, W. Lu, V. K. Punyamurtula, T. Kim, and Y. Qiao, J. Appl. Phys. 105, 024309 (2009).

    Article  ADS  Google Scholar 

  41. V. Eroshenko, R.-C. Regis, Al. Soulard, and J. Patarin, C. R. Phys. 3, 111 (2002).

    Article  ADS  Google Scholar 

  42. A. Han, W. Lu, T. Kim, X. Chen, and Y. Qiao, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 78, 031408 (2008).

    Article  ADS  Google Scholar 

  43. L. Liu, X. Chen, W. Lu, A. Han, and Y. Qiao, Phys. Rev. Lett. 102, 184501 (2009).

    Article  ADS  Google Scholar 

  44. L. Coiffard and A. L. Eroshonko, J. Colloid Interface Sci. 300, 304 (2006).

    Article  Google Scholar 

  45. V. D. Borman, A. A. Belogorlov, G. V. Lisichkin, V. I. Troyan, and V. N. Tronin, J. Exp. Theor. Phys. 108 (3), 389 (2009).

    Article  ADS  Google Scholar 

  46. A. A. Abrikosov, JETP Lett. 29 (1), 65 (1979).

    ADS  Google Scholar 

  47. S. P. Rigby and K. J. Edler, J. Colloid Interface Sci. 250, 175 (2002).

    Article  Google Scholar 

  48. V. D. Borman, A. A. Belogorlov, A. M. Grekhov, and V. N. Tronin, Int. J. Mod. Phys. B 29 (15), 1550097 (2015). doi: 10.1142/S0217979215500976

    Article  ADS  Google Scholar 

  49. F. Gomez, R. Donoyol, and J. Rouquerol, Langmuir 16 (9), 4374 (2000).

    Article  Google Scholar 

  50. V. Lefevre, A. Saugey, J. L. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, and G. Vigier, Colloids Surf., A 241, 265 (2004).

    Article  Google Scholar 

  51. E. Mamontov, Y. Kumzerov, and S. Vakhrushev, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 061502 (2005).

    Article  Google Scholar 

  52. V. D. Borman, A. A. Belogorlov, F. M. Grekhov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 100 (2), 385 (2005).

    Article  ADS  Google Scholar 

  53. X. Komg and Y. Qiao, Philos. Mag. Lett. 85 (7), 331 (2004).

    Article  ADS  Google Scholar 

  54. F. Porcheron, R. A. Monison, and M. Thommes, Langmuir 20 (15), 6482 (2004).

    Article  Google Scholar 

  55. M. Sashimi, Rev. Mod. Phys. 65, 1393 (1993)

    Article  ADS  Google Scholar 

  56. M. L. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  57. Porous Media: Applications in Biological Systems and Biotechnology, Ed. by K. Vafai (CRC Press, Boca Raton, Florida, United States, 2011).

    Google Scholar 

  58. S. Lowell, J. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density (Kluwer, Dordrecht, The Netherlands, 2004).

    Book  Google Scholar 

  59. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 112 (3), 385 (2011).

    Article  ADS  Google Scholar 

  60. J. A. Casselman, A. Desouza, and P. A. Monson, Mol. Phys. 113, 1250 (2015).

    Article  ADS  Google Scholar 

  61. H.-J. Woo and P. A. Monson, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 041207 (2003).

    Article  ADS  Google Scholar 

  62. E. Kieolik, P. A. Monson, M. L. Rosinberg, S. Sarkisov, and G. Tarjus, Phys. Rev. Lett. 87, 055701 (2011)

    Article  ADS  Google Scholar 

  63. H.-J. Woo, L. Sarkisov, and P. A. Monson, Langmuir 17 (24), 7472 (2001)

    Article  Google Scholar 

  64. M. Tommes, J. Morell, K. A. Cychosz, and M. Fröba, Langmuir 29 (48), 14893 (2013).

    Article  Google Scholar 

  65. R. Valiulin, S. Naumov, P. Galvosas, J. Kärger, H.-J. Woo, F. Porcheron, and P. A. Monson, Nature 443 (7114), 965 (2006).

    Article  ADS  Google Scholar 

  66. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, and V. N. Tronin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 88, 052116 (2013).

    Article  ADS  Google Scholar 

  67. A. Y. Fadeev and V. A. Eroshenko, J. Colloid Interface Sci. 187, 275 (1997).

    Article  Google Scholar 

  68. G. V. Lisichkin, Chemistry of Grafted Surface Compounds (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  69. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Springer-Verlag, New York, 2006).

    Google Scholar 

  70. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 1: Mechanics (Butterworth–Heinemann, Oxford, 2000; Nauka, Moscow, 2010).

    Google Scholar 

  71. Yu. Qiao, Yu. Punyamurtula, Venkata K. Xian, Guijun Karbhari, M. Vistasp, and Han Aijie, Appl. Phys. Lett. 92, 063109 (2008).

    Article  ADS  Google Scholar 

  72. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 6: Fluid Mechanics (Butterworth–Heinemann, Oxford, 2000; Nauka, Moscow, 2010).

    Google Scholar 

  73. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, V. N. Tronin, and V. I. Troyan, arXiv:1302.5547.

  74. L. Kheifets and A. Neimark, Multiphase Processes in Porous Media (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  75. Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, Ed. by W. M. Haynes, D. R. Lide, and T. J. Bruno, 93rd ed. (CRC Press, Boca Raton, Florida, United States, 2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Tronin.

Additional information

Original Russian Text © V.D. Borman, A.A. Belogorlov, V.M. Zhuromskii, V.N. Tronin, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 6, pp. 1169–1185.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borman, V.D., Belogorlov, A.A., Zhuromskii, V.M. et al. Anomalously slow relaxation of a nonwetting liquid in the disordered confinement of a nanoporous medium. J. Exp. Theor. Phys. 121, 1027–1041 (2015). https://doi.org/10.1134/S1063776115120043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115120043

Keywords

Navigation