Skip to main content
Log in

Hybrid Atomic–Optical Quantum Gyrometry

  • MISCELLANEOUS
  • Published:
JETP Letters Aims and scope Submit manuscript

A “hybrid” atomic–optical scheme of an interferometer–gyroscope has been proposed and investigated. It is based on the ring configuration of a Bose–Einstein condensate that is intercepted by an additional potential barrier or well. This ring configuration defect is created by a nonresonant radiation beam that interacts dispersively with the atoms located in its region. The beam propagates along one of the arms of a Mach–Zehnder interferometer. The rotation of the gyrometer reference system modifies the state of the condensate due to the mentioned potential defect and it, in turn, changes the conditions of interference of radiation interacting with atoms. In contrast to the well-known ideas of using the Bose–Einstein condensate in gyrometry, which imply the destruction of the condensate in order to directly observe its interference, the proposed scheme ideally operates without the loss of atoms by the condensate. The efficiency of the scheme has been estimated for realistic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. It is the Bose–Einstein condensate that is the detector of rotations. This distinguishes the proposed scheme from the idea of ​​a hybrid gyrometer described in [20], where the detector is an optical Sagnac loop. The ensemble of atoms is included in the design of the splitter/mixer of the optical beams.

  2. If the optimum exists, it should most likely correspond to a well that attracts atoms. However, this well should not be too deep; otherwise, most of the atoms will be localized and the sensitivity to rotation will be lost. The characteristic scale of the well depth is obviously \({{u}_{ * }}\) since this value, according to Eq. (6), separates the deep and shallow well regimes.

REFERENCES

  1. L. P. Pitaevskii, Phys. Usp. 49, 333 (2006).

    Article  ADS  Google Scholar 

  2. S. Stringari, Phys. Rev. Lett. 86, 4725 (2001).

    Article  ADS  Google Scholar 

  3. O. I. Tolstikhin, T. Morishita, and S. Watanabe, Phys. Rev. A 72, 051603R (2005).

    Article  ADS  Google Scholar 

  4. S. Ragole and J. M. Taylor, Phys. Rev. Lett. 117, 203002 (2016).

    Article  ADS  Google Scholar 

  5. V. Giovannetti, S. Lloyd, and L. Maccone, Science (Washington, DC, U. S.) 306, 1330 (2004).

    Article  ADS  Google Scholar 

  6. Ch. Luo, J. Huang, X. Zhang, and Ch. Lee, Phys. Rev. A 95, 023608 (2017).

    Article  ADS  Google Scholar 

  7. G. Pelegr, J. Mompart, and V. Ahufinger, New J. Phys. 20, 103001 (2018).

    Article  ADS  Google Scholar 

  8. L. Shao, W. Li, and X. Wang, arXiv:2006.05794v1[quant-ph] (2020).

  9. M. Yu. Kagan and A. V. Turlapov, Phys. Usp. 62, 215 (2019).

    Article  ADS  Google Scholar 

  10. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, Opt. Express 11, 158 (2003).

    Article  ADS  Google Scholar 

  11. M. Cazalilla, J. Phys. B: At. Mol. Opt. Phys. 37, 1 (2004).

    Article  ADS  Google Scholar 

  12. R. Cittro, A. Minguzzi, and F. W. J. Hekking, Phys. Rev. B 79, 172505 (2009).

    Article  ADS  Google Scholar 

  13. N. Didier, A. Minguzzi, and J. Hekking, Phys. Rev. A 79, 063633 (2009).

    Article  ADS  Google Scholar 

  14. D. W. Hallwood, T. Ernt, and J. Brand, Phys. Rev. A 82, 063623 (2010).

    Article  ADS  Google Scholar 

  15. S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark, C. J. Lobb, W. D. Phillips, M. Edwards, and G. K. Campbell, Nature (London, U.K.) 506, 200 (2014).

    Article  ADS  Google Scholar 

  16. A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Phys. Rev. Lett. 87, 130402 (2001).

    Article  ADS  Google Scholar 

  17. S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, Phys. Rev. Lett. 95, 143201 (2005).

    Article  ADS  Google Scholar 

  18. C. Ryu, P. W. Blackburn, A. A. Blinova, and M. G. Boshier, Phys. Rev. Lett. 111, 205301 (2013).

    Article  ADS  Google Scholar 

  19. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).

    Article  ADS  Google Scholar 

  20. Y. Wu, J. Guo, X. Feng, L. Q. Chen, Ch.-H. Yuan, and W. Zhang, arXiv: 2009.06166v1 [quant-ph] (2020).

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Fizmatlit, Moscow, 2004; Pergamon, New York, 1988).

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2004; Pergamon, New York, 1977).

  23. L. V. Il’ichev, JETP Lett. 106, 12 (2017).

    Article  ADS  Google Scholar 

  24. L. V. Il’ichev and P. L. Chapovskii, Quant. Elektron. 47, 463 (2017).

    Article  ADS  Google Scholar 

  25. T. S. Yakovleva, A. M. Rostom, V. A. Tomilin, and L. V. Il’ichov, Opt. Commun. 436, 52 (2019).

    Article  ADS  Google Scholar 

  26. L. V. Il’ichev and P. L. Chapovskii, JETP Lett. 102, 14 (2015).

    Article  ADS  Google Scholar 

  27. V. A. Tomilin and L. V. Il’ichov, Ann. Phys. 528, 619 (2016).

    Article  Google Scholar 

  28. V. A. Tomilin and L. V. Il’ichev, Quantum Electron. 50, 537 (2020).

    Article  ADS  Google Scholar 

  29. G. E. Marti, R. Olf, and D. M. Stamper-Kurn, Phys. Rev. A 91, 013602 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to D.V. Brazhnikov and O.N. Prudnikov for useful discussions.

Funding

This work was supported by the Federal Agency for Scientific Organization of the Russian Federation (project no. AAAA-A17-117052210003-4, internal no. FASO 0319-2016-0002, state assignment for the Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences). L.V. Il’ichev acknowledges the support of the Russian Science Foundation (project no. 20-12-00081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tomilin.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilin, V.A., Il’ichev, L.V. Hybrid Atomic–Optical Quantum Gyrometry. Jetp Lett. 113, 207–212 (2021). https://doi.org/10.1134/S0021364021030103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021030103

Navigation