Skip to main content
Log in

Toward atom interferometer gyroscope built on an atom chip

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This is a review about the progress of an atom interferometer in a confined trap as a gyroscope at Korea National University of Education. Our atom interferometer is based on the wave nature of matter. We cooled down neutral 87Rb gas below the critical temperature where the atomic ensemble follows Bose–Einstein distribution instead of Boltzman one, called BEC (Bose Einstein Condensation). At this temperature, atoms behave like wave and the amplitude of it is high enough to detect since most atoms occupy the same quantum state and phase. We produce BEC in a magnetic harmonic trap which is generated by an atom chip and bias magnetic field. We also develop the process of splitting and recombining BEC in a circular waveguide. By combining splitting and recombination, we suggested a way to build matter wave Sagnac interferometer in a spatially confined trap. Our atomic Sagnac interferometer is aimed at miniaturizing and fast generating of BEC systems. In this article we introduce an experimental process and how to adopt an optimal control algorithm to build a Sagnac interferometer for an atomic matter wave gyroscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.D. King, GEC Rev. 13, 140 (1998)

    Google Scholar 

  2. M.N. Vittorio et al., Sensors 17, 2284 (2017)

    Article  Google Scholar 

  3. N. El-Sheimy, A. Youssef, Satellite Navigation 1, 2 (2020)

    Article  Google Scholar 

  4. D. Xia, Yu. Cheng, L. Kong, Sensors 14, 1394 (2014)

    Article  ADS  Google Scholar 

  5. G. Zhanshe et al., Microsyst. Technol. 21, 2053 (2015)

    Article  Google Scholar 

  6. Ali Darvishian, University of Michigan. Thesis. 21, 3345 (2018)

    Google Scholar 

  7. S. Singh, J. Woo, G. He, J.Y. Cho, K. Najafi, IEEE 33rd Int. Conf. Micro Electro Mech. Syst. (MEMS). 737, 667 (2020)

    Google Scholar 

  8. J. Sun et al., IEEE Sens. J. 22, 3105 (2022)

    Article  ADS  Google Scholar 

  9. M.H. Asadian, D. Wang, A.M. Shkel, J. Microelectromech Sys. 14, 3166213 (2022)

    Google Scholar 

  10. Y.-H. Lai et al., Nat. Photonics 14, 345 (2020)

    Article  ADS  Google Scholar 

  11. J. Li, M.G. Suh, K. Vahala, Optica 4, 346 (2017)

    Article  ADS  Google Scholar 

  12. C. Ciminelli, F. Peluso, M.N. Armenise, SPIE 5728 Integrat. Optics 5728, 93 (2005)

    ADS  Google Scholar 

  13. G.A. Sanders et al., IEEE Inter. Symp. Inertial. Sens. Syst. 168, 435 (2017)

    Google Scholar 

  14. M.N. Armenise, V.M.N. Passaro, F. De Leonardis, M. Armenise, J. Lightwave Technol. 19, 10 (2001)

    Article  Google Scholar 

  15. A. Khandelwal, A. Syed, J. Nayak, J. Lightwave Technol. 35, 3555 (2016)

    Article  ADS  Google Scholar 

  16. R.J.P. Menéndez, Gyroscopes-Princ. Appl. IntechOpen 34, 5333 (2019)

    Google Scholar 

  17. S. Zhao et al., Phot. Res. 10, 542 (2022)

    Article  Google Scholar 

  18. V.V. Azarova et al., Quantum Electron. 45, 171 (2015)

    Article  ADS  Google Scholar 

  19. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009)

    Article  ADS  Google Scholar 

  20. R. Karcher et al., New J. Phys. 20, 113041 (2018)

    Article  ADS  Google Scholar 

  21. K. Frye et al., EPJ Quantum Technol. 8, 1 (2021)

    Article  Google Scholar 

  22. A. Peters, K.Y. Chung, B. Young, J. Hensley, S. Chu, Phil. Trans. R. Soc. A. 355, 2223 (1997)

    Article  ADS  Google Scholar 

  23. C.L. Garrido Alzar, AVS Quantum Sci. 1, 014702 (2019)

    Article  ADS  Google Scholar 

  24. R. Geigerl et al., Nat. Commun. 2, 474 (2011)

    Article  ADS  Google Scholar 

  25. C. Schubert et al., Sci Rep 11, 16121 (2021)

    Article  ADS  Google Scholar 

  26. D.S. Durfee, Y.K. Shaham, M.A. Kasevich, Phys. Rev. Lett. 97, 240801 (2006)

    Article  ADS  Google Scholar 

  27. G. Rosi et al., Phys. Rev. Lett. 114, 013001 (2015)

    Article  ADS  Google Scholar 

  28. R.H. Parker et al., Science 360, 191 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Rosi et al., Nature 510, 518 (2014)

    Article  ADS  Google Scholar 

  30. L. Morel et al., Nature 588, 61 (2020)

    Article  ADS  Google Scholar 

  31. P. Hamilton et al., Science 349, 849 (2015)

    Article  ADS  Google Scholar 

  32. B. Elder et al., Phys. Rev. D 94, 044051 (2016)

    Article  ADS  Google Scholar 

  33. M. Jaffe et al., Phys. Rev. Lett. 121, 040402 (2018)

    Article  ADS  Google Scholar 

  34. N.L. Figueroa et al., Quantum Sci. Technol. 6, 034004 (2021)

    Article  ADS  Google Scholar 

  35. P. Asenbaum et al., Phys. Rev. Lett. 125, 191101 (2020)

    Article  ADS  Google Scholar 

  36. S. Herrmann et al., Class. Quantum Grav. 29, 184003 (2012)

    Article  ADS  Google Scholar 

  37. M.G. Tarallo et al., Phys. Rev. Lett. 113, 023005 (2014)

    Article  ADS  Google Scholar 

  38. M.D. Lachmann et al., Nat. Commun. 12, 1317 (2021)

    Article  ADS  Google Scholar 

  39. A. Belenchia et al., Phys. Rep. 951, 1 (2021)

    Article  ADS  Google Scholar 

  40. Z. Zhu et al., Aerospace 9, 253 (2022)

    Article  Google Scholar 

  41. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  42. K.B. Davis, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  43. Y. Shin et al., Phys. Rev. Lett. 92, 050405 (2004)

    Article  ADS  Google Scholar 

  44. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  45. W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002)

    Article  ADS  Google Scholar 

  46. D. Peter, D. Schwindt et al., Phys. Rev. A 72, 023612 (2005)

    Article  ADS  Google Scholar 

  47. Y.J. Wang et al., Phys. Rev. Lett. 94, 090405 (2005)

    Article  ADS  Google Scholar 

  48. R. Folman et al., Adv. Atom. Molecul. Opt. Phys. 48, 263 (2002)

    Article  ADS  Google Scholar 

  49. T. Berrada et al., Nat. Commun. 4, 2077 (2013)

    Article  ADS  Google Scholar 

  50. G.D. McDonald et al., Phys. Rev. A 87, 013632 (2013)

    Article  ADS  Google Scholar 

  51. C. Ryu, M.G. Boshier, New J. Phys. 17, 092002 (2015)

    Article  ADS  Google Scholar 

  52. S.C. Caliga et al., New J. Phys. 18, 025010 (2016)

    Article  ADS  Google Scholar 

  53. R. Fortanier, D. Zajec, J. Main, G. Wunner, J. Phys. B: At. Mol. Opt. Phys. 46, 235301 (2013)

    Article  ADS  Google Scholar 

  54. B. Liu, L.B. Fu, S.P. Yang, J. Liu, Phys. Rev. A 75, 033601 (2007)

    Article  ADS  Google Scholar 

  55. S.C. Caliga et al., New J. Phys. 18, 015012 (2016)

    Article  ADS  Google Scholar 

  56. C.A. Weidner, D.Z. Anderson, Phys. Rev. Lett. 120, 263201 (2018)

    Article  ADS  Google Scholar 

  57. C.A. Weidner, H. Yu, R. Kosloff, D.Z. Anderson, Phys. Rev. A 95, 043624 (2017)

    Article  ADS  Google Scholar 

  58. J.H. Denschlag et al., J. Phys. B: At. Mol. Opt. Phys. 35, 3095 (2002)

    Article  ADS  Google Scholar 

  59. O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)

    Article  ADS  Google Scholar 

  60. I. Bloch, Nature Phys 1, 23 (2005)

    Article  ADS  Google Scholar 

  61. S. Gupta et al., Phys. Rev. Lett. 95, 143201 (2005)

    Article  ADS  Google Scholar 

  62. C. Ryu, P.W. Blackburn, A.A. Blinova, M.G. Boshier, Phys. Rev. Lett. 111, 205301 (2013)

    Article  ADS  Google Scholar 

  63. A. Turpin et al., Opt. Express 23, 1638 (2015)

    Article  ADS  Google Scholar 

  64. T.A. Bell et al., New J. Phys. 18, 035003 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  65. W. Ketterle, N.J. van Druten, Phys. Rev. A 54, 656 (1996)

    Article  ADS  Google Scholar 

  66. D.S. Petrov, M. Holzmann, G.V. Shlyapnikov, Phys. Rev. Lett. 84, 2551 (2000)

    Article  ADS  Google Scholar 

  67. I.B. Spielman, W.D. Phillips, J.V. Porto, Phys. Rev. Lett. 100, 120402 (2008)

    Article  ADS  Google Scholar 

  68. B. Rauer et al., Phys. Rev. Lett. 116, 030402 (2016)

    Article  ADS  Google Scholar 

  69. N.L. Smith et al., J. Phys. B: At. Mol. Opt. Phys. 38, 223 (2005)

    Article  ADS  Google Scholar 

  70. T.P. Meyrath, F. Schreck, J.L. Hanssen, C.S. Chuu, M.G. Raizen, Phys. Rev. A 71, 041604(R) (2005)

    Article  ADS  Google Scholar 

  71. L. Chomaz et al., Nat. Commun. 6, 6162 (2015)

    Article  ADS  Google Scholar 

  72. L. Alexander et al., Phys. Rev. Lett. 110, 200406 (2013)

    Article  Google Scholar 

  73. J.H.T. Burke, B. Deissler, K.J. Hughes, C.A. Sackett, Phys. Rev. A 78, 023619 (2008)

    Article  ADS  Google Scholar 

  74. Y. Shin et al., Phys. Rev. A 72, 021604(R) (2005)

    Article  ADS  Google Scholar 

  75. R.J. Sewell et al., J. Phys. B: At. Mol. Opt. Phys. 43, 051003 (2010)

    Article  ADS  Google Scholar 

  76. E.A. Salim, S.C. Caliga, J.B. Pfeiffer, D.Z. Anderson, Appl. Phys. Lett. 102, 084104 (2013)

    Article  ADS  Google Scholar 

  77. E.A. Salim et al., Quantum Inf Process 10, 975 (2011)

    Article  Google Scholar 

  78. Hoon Yu, Korea National University of Education, Ph. D thesis (2013)

  79. Seung Jin Kim, Korea National University of Education, Ph. D thesis (2016)

  80. Yu. Hoon et al., J. Korean Phys. Soc. 63, 900 (2013)

    Article  Google Scholar 

  81. I. Lesanovsky, T. Schumm, S. Hofferberth, L.M. Andersson, P. Krüger, J. Schmiedmayer, Phys. Rev. A 73, 033619 (2006)

    Article  ADS  Google Scholar 

  82. S.J. Kim, H. Yu, S.T. Gang, D.Z. Anderson, J.B. Kim, Phys. Rev. A 93, 033612 (2016)

    Article  ADS  Google Scholar 

  83. Yu. Hoon, Seung Jin Kim, Jung Bog Kim, Open Physics 18, 374 (2020)

    Article  Google Scholar 

  84. U. Hohenester, Comput. Phys. Commu. 185, 194 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NRF-2021R1F1A1060385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Bog Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Kim, S.J. & Kim, J.B. Toward atom interferometer gyroscope built on an atom chip. J. Korean Phys. Soc. 82, 819–826 (2023). https://doi.org/10.1007/s40042-023-00768-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00768-z

Keywords

Navigation