Skip to main content
Log in

Efficient Integration of Single-Photon Emitters in Thin InSe Films into Resonance Silicon Waveguides

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A concept of the optimal design of a silicon waveguide based on optically coupled Mie-resonant nanoantennas for efficient inputting of light from point emitters associated with excitons localized at defects in a thin InSe film is proposed. Numerical calculations demonstrate that the efficiency of coupling between a dipole emitter and a resonant silicon waveguide is four orders of magnitude greater than that for a conventional ridge waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Nat. Photon. 14, 273 (2020).

    Article  ADS  Google Scholar 

  2. M. D. Eisamana, J. Fan, A. Migdall, and S. V. Polyakov, Rev. Sci. Instrum. 82, 071101 (2011).

    Article  ADS  Google Scholar 

  3. I. Aharonovich, D. Englund, and M. Toth, Nat. Photon. 10, 631 (2016).

    Article  ADS  Google Scholar 

  4. A. Krasnok, A. Maloshtan, D. Chigrin, Y. Kivshar, and P. Belov, Laser Photon. Rev. 9, 385 (2015).

    Article  ADS  Google Scholar 

  5. F. Lenzini, N. Gruhler, N. Walter, and W. H. P. Pernice, Adv. Quantum Technol. 1, 1800061 (2018).

    Article  Google Scholar 

  6. C. Dietrich, A. Fiore, M. Thompson, and S. Hofling, Laser Photon. Rev. 10, 6 (2016).

    Google Scholar 

  7. S. Hepp, M. Jetter, S. Portalupi, and P. Michler, Adv. Quantum Technol. 2, 1900020 (2019).

    Article  Google Scholar 

  8. X. Liu and M. Hersam, Nat. Rev. Mater. 4, 669 (2019).

    Article  ADS  Google Scholar 

  9. K. Novoselov, A. Mishchenko, A. Carvalho, and A. Castro Neto, Science (Washington, DC, U. S.) 353, 6298 (2016).

    Article  Google Scholar 

  10. M. Kuroda, I. Munakata, and Y. Nishina, Solid State Commun. 33, 687 (1980).

    Article  ADS  Google Scholar 

  11. P. Gomes da Costa, R. G. Dandrea, R. F. Wallis, and M. Balkanski, Phys. Rev. 48, 14135 (1993).

    Article  Google Scholar 

  12. M. Brotons-Gisbert, R. Proux, R. Picard, D. Andres-Penares, A. Branny, and B. D. Gerardot, Nat. Commun. 10, 3913 (2019).

    Article  ADS  Google Scholar 

  13. T. Shubina, W. Desrat, M. Moret, A. Tiberj, O. Briot, V. Davydov, and A. Platonov, Nat. Commun. 10, 3479 (2019).

    Article  ADS  Google Scholar 

  14. H. Chen, M. Palummo, D. Sangalli, and M. Bernardi, Nano Lett. 18, 3839 (2018).

    Article  ADS  Google Scholar 

  15. S. Tamalampudi, Y. Lu, R. Kumar, and R. Sankar, Nano Lett. 14, 2800 (2014).

    Article  ADS  Google Scholar 

  16. C. Chakraborty, N. Vamivakas, and D. Englund, Nanophotonics 8, 2017 (2019).

    Article  Google Scholar 

  17. S. Ren, Q. Tan, and J. Zhang, J. Semicond. 40, 7 (2019).

    Google Scholar 

  18. P. Yao, V. S. C. Manga Rao, and S. Hughes, Laser Photon. Rev. 4, 499 (2010).

    Article  ADS  Google Scholar 

  19. M. Pelton, Nat. Photon. 9, 427 (2015).

    Article  ADS  Google Scholar 

  20. O. Sergaeva, I. Volkov, and R. Savelev, Nanosyst.: Phys. Chem. Math. 10, 266 (2019).

    Google Scholar 

  21. A. Kuznetsov, A. Miroshnichenko, M. Brongersma, Y. Kivshar, and B. Luk’yanchuk, Science (Washington, DC, U. S.) 18, 354 (2016).

    Google Scholar 

  22. M. K. Kroychuk, A. S. Shorokhov, D. F. Yagudin, D. A. Shilkin, D. A. Smirnova, M. R. Shcherbakov, and A. A. Fedyanin, Nano Lett. 5, 3471 (2020).

    Article  ADS  Google Scholar 

  23. E. V. Melik-Gaykazyan, K. L. Koshelev, J. H. Choi, S. S. Kruk, A. A. Fedyanin, and Y. S. Kivshar, JETP Lett. 109, 131 (2019).

    Article  ADS  Google Scholar 

  24. R. Bakker, Y. Yu, and A. Kuznetsov, Nano Lett. 17, 3458 (2017).

    Article  ADS  Google Scholar 

  25. P. Cheben, R. Halir, and H. Atwater, Nature (London, U.K.) 560, 565 (2018).

    Article  ADS  Google Scholar 

  26. G. Mudd, M. Molas, X. Chen, V. Zolyomi, K. Nogajewski, Z. R. Kudrynskyi, Z. D. Kovalyuk, G. Yusa, O. Makarovsky, and L. Eaves, Sci. Rep. 6, 39619 (2016).

    Article  ADS  Google Scholar 

  27. C. Chakraborty, L. Kinnischtzke, K. Goodfellow, R. Beam, and A. Vamivakas, Nat. Nanotechnol. 10, 507 (2015).

    Article  ADS  Google Scholar 

  28. F. Peyskens, C. Chakraborty, M. Muneeb, D. Thourhout, and D. Englund, Nat. Commun. 10, 4435 (2019).

    Article  ADS  Google Scholar 

  29. W. Elshaari, W. Pernicz, K. Srinivasan, O. Benson, and V. Zwiller, Nat. Photon. 12, 285 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to T.V. Shubina for useful comments and advice.

Funding

This study was supported by the Russian Foundation for Basic Research, project nos. 19-32-90223 (simulation of the optical coupling between the quantum emitter and the waveguide) and 18-29-20097 (numerical optimization of the transmission of the resonant waveguide). Part of the study was supported by the Quantum Technology Center, Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fedyanin.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 11, pp. 730–735.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gartman, A.D., Kroichuk, M.K., Shorokhov, A.S. et al. Efficient Integration of Single-Photon Emitters in Thin InSe Films into Resonance Silicon Waveguides. Jetp Lett. 112, 693–698 (2020). https://doi.org/10.1134/S002136402023006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402023006X

Navigation