Skip to main content
Log in

Self-Action of Nonparaxial Few-Cycle Optical Waves in Dielectric Media

  • Optics And Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A mathematical model of evolution of the space–time spectra of nonparaxial few-cycle optical waves in isotropic dielectric media with an arbitrary dispersion of the refractive index and the inertialess third-order nonlinearity has been discussed. It has been shown that, at the self-focusing of a wave single-cycle at the input to a nonlinear medium into an optical filament with transverse dimensions comparable with the central radiation wavelength, the strength of the increased longitudinal component of its electric field can become larger than the initial longitudinal component by a factor of 7 and can be 18% of the transverse component of the input wave field. Errors of the calculations of the self-action of radiation with superwide time and spatial spectra within simplified mathematical models have been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1990), p. 279 [in Russian].

    Google Scholar 

  2. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Pulses (Nauka, Moscow, 1988; AIP, New York, 1992).

    Google Scholar 

  3. R. W. Boyd, Nonlinear Optics (Academic, Springfield, VA, USA, 2008), p. 69.

    Book  Google Scholar 

  4. S. A. Iz’yurov and S. A. Kozlov, JETP Lett. 71, 453 (2000).

    Article  ADS  Google Scholar 

  5. M. D. Feit and J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).

    Article  ADS  Google Scholar 

  6. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006; Fizmatlit, Moscow, 2009).

    Google Scholar 

  7. S. N. Vlasov and V. I. Talanov, Self-Focusing of Waves (Inst. Prikl. Fiz. RAN, N. Novgorod, 1997), p. 161 [in Russian].

    Google Scholar 

  8. R. Martnez-Herrero, P. M. Mejas, and A. Manjavacas, Eur. J. Phys. 33, 579 (2012).

    Google Scholar 

  9. D. A. Savel’ev and S. N. Khonina, Komp’yut. Opt. 36, 511 (2012).

    Google Scholar 

  10. T. Grosjean and D. Courjon, Opt. Expres. 14, 2203 (2006).

    Article  ADS  Google Scholar 

  11. X. S. Xie and R. C. Dunn, Science (Washington, DC, U. S.) 265, 361 (1994).

    Article  ADS  Google Scholar 

  12. S. V. Garnov and I. A. Shcherbakov, Phys. Usp. 54, 91 (2011).

    Article  ADS  Google Scholar 

  13. V. G. Bespalov, A. A. Gorodetskiy, I. Yu. Denisyuk, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, N. V. Petrov, and S. E. Putilin, J. Opt. Technol. 75, 636 (2008).

    Article  Google Scholar 

  14. A. I. Maimistov, Quantum Electron. 30, 287 (2000).

    Article  ADS  Google Scholar 

  15. C. V. Sazonov, Bull. Russ. Acad. Sci.: Phys. 75, 157 (2011).

    Article  Google Scholar 

  16. N. V. Vysotina, N. N. Rozanov, and V. E. Semenov, JETP Lett. 83, 279 (2006).

    Article  ADS  Google Scholar 

  17. S. A. Kozlov and V. V. Samartsev, Fundamentals of Femtosecond Optics (Fizmatlit, Moscow, 2009; Woodhead, UK, 2013).

    Book  Google Scholar 

  18. A. N. Berkovskii, S. A. Kozlov, and Yu. A. Shpolyanskii, J. Opt. Technol. 75, 631 (2008).

    Article  Google Scholar 

  19. S. A. Kozlov and P. A. Petroshenko, JETP Lett. 76, 206 (2002).

    Article  ADS  Google Scholar 

  20. V. N. Vasil’ev, S. A. Kozlov, P. A. Petroshenko, and N. N. Rozanov, Opt. Spectrosc. 96, 182 (2004).

    Article  ADS  Google Scholar 

  21. A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov, and Yu. S. Kivshar, J. Infrared, Millimeter, Terahertz Wave. 33, 926 (2012).

    Article  Google Scholar 

  22. V. G. Bespalov, S. A. Kozlov, Yu. A. Shpolyanskiy, and I. A. Walmsley, Phys. Rev. 66, 013811 (2002).

    Article  Google Scholar 

  23. A. A. Drozdov, Yu. S. Kivshar, S. A. Kozlov, and A. A. Sukhorukov, Phys. Rev. 86, 053822 (2012).

    Article  Google Scholar 

  24. R. W. Boyd, S. G. Lukishova, and Y. Shen, Self-Focusing: Past and Present (Springer, New York, 2009), p. 399.

    Book  Google Scholar 

  25. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, Quantum Electron. 39, 205 (2009).

    Article  ADS  Google Scholar 

  26. M. Shalaby and C. P. Hauri, Nat. Commun. 6, 5976 (2015).

    Article  ADS  Google Scholar 

  27. Yu. A. Kapoyko, A. A. Drozdov, S. A. Kozlov, and X. Ch. Zhang, Phys. Rev. 94, 033803 (2016).

    Article  ADS  Google Scholar 

  28. E. A. Strepitov, E. P. Liakhov, N. S. Balbekin, M. K. Khodzitsky, O. A. Smolyanskaya, A. S. Trulyov, and M. K. Serebryakova, Proc. SPI. 9542, 95420M (2015).

    Google Scholar 

  29. K. Dolgaleva, D. V. Materikina, R. W. Boyd, and S. A. Kozlov, Phys. Rev. 92, 023809 (2015).

    Article  ADS  Google Scholar 

  30. M. A. Knyazev and S. A. Kozlov, Quantum Electron. 48, 119 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kislin.

Additional information

Original Russian Text © D.A. Kislin, M.A. Knyazev, Yu.A. Shpolyanskii, S.A. Kozlov, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 12, pp. 780–787.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislin, D.A., Knyazev, M.A., Shpolyanskii, Y.A. et al. Self-Action of Nonparaxial Few-Cycle Optical Waves in Dielectric Media. Jetp Lett. 107, 753–760 (2018). https://doi.org/10.1134/S0021364018120093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018120093

Navigation