Skip to main content
Log in

Strain in Ultrathin SiGeSn Layers in a Silicon Matrix

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Strain in SiGeSn alloy layers with thicknesses of d = 1.5 and 2.0 nm grown in a Si matrix by molecular-beam epitaxy is investigated using the geometric-phase analysis of high-resolution electron microscopy images. The layer thickness is comparable to the spatial resolution of the method (Δ ~ 1 nm), which leads to a considerable distortion of the strain distribution profile and an error in determining the strain value. A correction to the measured strain making it closer to the true value is obtained by comparing the shapes of the observed and real strain distributions in the investigated layers. The correction is determined by the Δ/d ratio. The found strain values are in good agreement with the calculations for pseudomorphic layers in the model of a rigid substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Paul, Semicond. Sci. Technol. 19, R75 (2004).

    Article  ADS  Google Scholar 

  2. C. Auth, M. Buehler, A. Cappellani, C. H. Choi, G. Ding, W. Han, S. Joshi, B. McIntyre, M. Prince, P. Ranade, J. Sandford, and C. Thomas, Intel Technol. J. 12, 77 (2008).

    Google Scholar 

  3. M. Ieong, V. Narayanan, D. Singh, A. Topol, V. Chan, and Z. Ren, Mater. Today 9, 2631 (2006).

    Article  Google Scholar 

  4. J. Nicolai, C. Gatel, B. Warot-Fonrose, R. Teissier, A. N. Baranov, C. Magen, and A. Ponchet, Appl. Phys. Lett. 104, 031907 (2014).

    Article  ADS  Google Scholar 

  5. S. Kret, P. Ruterana, A. Rosenauer, and D. Gerthsen, Phys. Status Solidi B 227, 247 (2001).

    Article  ADS  Google Scholar 

  6. F. Houdellier, C. Roucau, L. Clement, J. Rouviere, and M. Casanove, Ultramicroscopy 106, 951 (2006).

    Article  Google Scholar 

  7. A. Beche, J. L. Rouviere, L. Clement, and J. M. Hartmann, Appl. Phys. Lett. 95, 123114 (2009).

    Article  ADS  Google Scholar 

  8. M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, Nature 453, 1086 (2008).

    Article  ADS  Google Scholar 

  9. E. Sarigiannidou, E. Monroy, B. Daudin, J. L. Rouviere, and A. D. Andreev, Appl. Phys. Lett. 87, 203112 (2005).

    Article  ADS  Google Scholar 

  10. F. Hue, M. Hytch, H. Bender, F. Houdellier, and A. Claverie, Phys. Rev. Lett. 100, 156602 (2008).

    Article  ADS  Google Scholar 

  11. A. Beche, J. L. Rouviere, J. P. Barnes, and D. Cooper, Ultramicroscopy 131, 10 (2013).

    Article  Google Scholar 

  12. M. Takeda and J. Suzuki, J. Opt. Soc. Am. A 13, 1495 (1996).

    Article  ADS  Google Scholar 

  13. M. J. Hytch, E. Snoeck, and R. Kilaas, Ultramicroscopy 74, 131 (1998).

    Article  Google Scholar 

  14. J. L. Rouviere and E. Sarigiannidou, Ultramicroscopy 106, 1 (2005).

    Article  Google Scholar 

  15. A. K. Gutakovskii, A. L. Chuvilin, and S. A. Song, Bull. Russ. Acad. Sci.: Phys. 71, 1426 (2007).

    Article  Google Scholar 

  16. S. H. Vajargah, M. Couillard, K. Cui, S. G. Tavakoli, B. Robinson, R. N. Kleiman, J. S. Preston, and G. A. Botton, Appl. Phys. Lett. 98, 082113 (2011).

    Article  ADS  Google Scholar 

  17. A. Attiaoui and O. Moutanabbir, J. Appl. Phys. 116, 063712 (2014).

    Article  ADS  Google Scholar 

  18. A. I. Nikiforov, V. A. Timofeev, A. R. Tuktamyshev, A. I. Yakimov, V. I. Mashanov, and A. K. Gutakovskii, J. Cryst. Growth 457, 215 (2017).

    Article  ADS  Google Scholar 

  19. A. B. Talochkin, V. A. Timofeev, A. K. Gutakovskii, and V. I. Mashanov, J. Cryst. Growth 478, 205 (2017).

    Article  ADS  Google Scholar 

  20. A. V. Nenashev and A. I. Dvurechenski, J. Exp. Theor. Phys. 91, 497 (2000).

    Article  ADS  Google Scholar 

  21. Y. Kikuchi, H. Sugii, and K. Shintani, J. Appl. Phys. 89, 1191 (2001).

    Article  ADS  Google Scholar 

  22. C. E. Pryor, M. E. Flatte, and J. Levy, Appl. Phys. Lett. 95, 232103 (2009).

    Article  ADS  Google Scholar 

  23. A. B. Talochkin and V. A. Markov, Nanotechnology 19, 275402 (2008).

    Article  ADS  Google Scholar 

  24. A. B. Talochkin, V. A. Markov, and V. I. Mashanov, Appl. Phys. Lett. 91, 093127 (2007).

    Article  ADS  Google Scholar 

  25. V. P. Mikhal’chenko, Phys. Solid State 45, 453 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Talochkin.

Additional information

Original Russian Text © A.K. Gutakovskii, A.B. Talochkin, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 12, pp. 746–751.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutakovskii, A.K., Talochkin, A.B. Strain in Ultrathin SiGeSn Layers in a Silicon Matrix. Jetp Lett. 106, 780–784 (2017). https://doi.org/10.1134/S0021364017240092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017240092

Navigation