Skip to main content
Log in

Bipolar and unipolar electrofluorescence in a molecular diode

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It is shown that unipolar electrofluorescence different from that caused by an nonidentical shift of levels of molecular orbitals involved in electron transport can be observed in a molecular diode, where the coupling of the chloroform group of a molecule with one of the electrodes is much stronger than its coupling with the other electrode. The critical potential differences are found and conditions under which bipolarity and unipolarity are observed are determined. The performed estimates of the radiation power indicate that electrofluorescence is much more efficient in 1M2 systems exhibiting unipolarity irrespective of the Stark shift of levels. In such systems, the phenomenon of electrochromism should be expected and the probability of manifestation of electrophosphorescence in them is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yasutomi, T. Morita, Y. Imanishi, and S. Kimura, Science 304, 5679 (2004).

    Article  Google Scholar 

  2. S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, Nano Lett. 9, 76 (2009).

    Article  ADS  Google Scholar 

  3. M. Galperin and A. Nitzan, Phys. Rev. Lett. 95, 206802 (2005).

    Article  ADS  Google Scholar 

  4. B. D. Fainberg, M. Jouravlev, and A. Nitzan, Phys. Rev. B 76, 245329 (2007).

    Article  ADS  Google Scholar 

  5. J. Buker and G. Kirchenow, Phys. Rev. B 78, 125107 (2008).

    Article  ADS  Google Scholar 

  6. R. Volkovich and U. Peskin, Phys. Rev. B 83, 033403 (2011).

    Article  ADS  Google Scholar 

  7. Ya. Zelinskyy and V. May, Nano Lett. 12, 446 (2012).

    Article  ADS  Google Scholar 

  8. E. G. Petrov, V. O. Leonov, and V. Snitsarev, J. Chem. Phys. 138, 184709 (2013).

    Article  ADS  Google Scholar 

  9. V. A. Leonov and E. G. Petrov, JETP Lett. 97, 549 (2013).

    Article  ADS  Google Scholar 

  10. Y. Zhang and V. May, Phys. Rev. B 89, 245441 (2014).

    Article  ADS  Google Scholar 

  11. E. G. Petrov, V. O. Leonov, and Ye. V. Shevchenko, Ukr. J. Phys. 59, 628 (2014).

    Article  Google Scholar 

  12. M. Galperin and M. A. Nitzan, Phys. Chem. Chem. Phys. 14, 9421 (2012).

    Article  Google Scholar 

  13. E. G. Petrov, Chem. Phys. 326, 151 (2006).

    Article  ADS  Google Scholar 

  14. J. K. Gimzewski, B. Reihl, J. H. Coombs, and R. R. Schlittler, Z. Phys. B: Condens Matter 72, 497 (1988).

    Article  ADS  Google Scholar 

  15. X. H. Qui, G. V. Nitzan, and W. Ho, Science 299, 542 (2003).

    Article  ADS  Google Scholar 

  16. Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, Phys. Rev. Lett. 92, 086801 (2004).

    Article  ADS  Google Scholar 

  17. J. S. Seldenthuis, H. S. J. van der Zant, and J. M. Thijssen, Phys. Rev. B 81, 205430 (2010).

    Article  ADS  Google Scholar 

  18. Z. C. Dong, X. L. Chang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, Nat. Photon. 4, 50 (2010).

    Article  ADS  Google Scholar 

  19. G. Tian and Y. Luo, Phys. Rev. B 84, 205419 (2011).

    Article  ADS  Google Scholar 

  20. J. Kalinowski, Organic Light-Emitting Diodes: Principles, Characteristics, and Processes (Marcel Dekker, New York, 2005).

    Google Scholar 

  21. E. Rossel, M. Pivetta, F. Patthey, and W. D. Sneider, Opt. Express 17, 2714 (2009).

    Article  ADS  Google Scholar 

  22. M. Vadai, N. Nachman, M. Ben-Zion, M. Bürkle, F. Pauly, J. C. Cuevas, and Y. Selzer, J. Phys. Chem. Lett. 4, 2811 (2013).

    Article  Google Scholar 

  23. Y. Zhang, Y. Zelinskyy, and V. May, Phys. Rev. B 88, 155426 (2013).

    Article  ADS  Google Scholar 

  24. G. Reecht, F. Scheurer, V. Speisser, Y. J. Dappe, F. Mathevet, and G. Schull, Phys. Rev. Lett. 112, 047403 (2014).

    Article  ADS  Google Scholar 

  25. G. Chen, X.-G. Li, Z.-Y. Zhang, and Z.-C. Dong, Nanoscale 7, 2442 (2015).

    Article  ADS  Google Scholar 

  26. E. Cavar, M.-C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W.-D. Schneider, Phys. Rev. Lett. 95, 196102 (2005).

    Article  ADS  Google Scholar 

  27. S.-E. Zhu, Y.-M. Kuang, F. Geng, and J.-Z. Zhu, J. Am. Chem. Soc. 135, 15794 (2013).

    Article  Google Scholar 

  28. E. G. Petrov, V. O. Leonov, V. May, and P. Hänggi, Chem. Phys. 407, 53 (2012).

    Article  ADS  Google Scholar 

  29. E. G. Petrov, V. May, and P. Hänggi, Phys. Rev. B 73, 045408 (2006).

    Article  ADS  Google Scholar 

  30. E. G. Petrov and M. V. Koval, Phys. Lett. A 372, 5651 (2008).

    Article  ADS  Google Scholar 

  31. M. Galperin, M. A. Nitzan, and A. Ratner, J. Phys.: Condens. Matter 19, 103201 (2007).

    ADS  Google Scholar 

  32. S. W. Wu, G. V. Nazin, and W. Ho, Phys. Rev. B 77, 205430 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Leonov.

Additional information

Original Russian Text © E.G. Petrov, V.O. Leonov, Ye.V. Shevchenko, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 2, pp. 77–86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, E.G., Leonov, V.O. & Shevchenko, Y.V. Bipolar and unipolar electrofluorescence in a molecular diode. Jetp Lett. 105, 89–97 (2017). https://doi.org/10.1134/S0021364017020126

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017020126

Navigation