Skip to main content
Log in

Thermal stability of diamond-like carbon nanothreads

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The thermally activated fracture processes in the carbon backbone of diamond-like carbon nanothreads and the hydrogen desorption from them has been studied by the molecular dynamics method. Specifically, the temperature dependence of the characteristic desorption time at T = 1700−2800 K has been determined. The activation energy and frequency factor in the Arrhenius formula for the desorption rate are found. This allows estimating the desorption time at any temperature. The mechanical stiffness of nanothreads is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. Y. Liu, G. Wang, Q. Huang, L. Guo, and X. Chen, Phys. Rev. Lett. 108, 225505 (2012).

    Article  ADS  Google Scholar 

  3. X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).

    Article  ADS  Google Scholar 

  4. Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Nano Lett. 15, 6182 (2015).

    Article  ADS  Google Scholar 

  5. M. M. Haley, Pure Appl. Chem. 80, 519 (2008).

    Article  Google Scholar 

  6. G. X. Li, Y. L. Li, H. B. Liu, Y. B. Guo, Y. J. Li, and D. B. Zhu, Chem. Commun. 46, 3256 (2010).

    Article  Google Scholar 

  7. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  ADS  Google Scholar 

  8. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 (2009).

    Article  ADS  Google Scholar 

  9. A. A. Dzhurakhalov and F. M. Peeters, Carbon 49, 3258 (2011).

    Article  Google Scholar 

  10. B. S. Pujari, S. Gusarov, M. Brett, and A. Kovalenko, Phys. Rev. B 84, 041402 (2011).

    Article  ADS  Google Scholar 

  11. J. Zhou, Q. Wang, Q. Sun, X. C. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 9, 3867 (2009).

    Article  ADS  Google Scholar 

  12. L. A. Chernozatonskii, P. B. Sorokin, A. G. Kvashnin, and D. G. Kvashnin, JETP Lett. 90, 134 (2009).

    Article  ADS  Google Scholar 

  13. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  14. D. Stojkovic, P. Zhang, and V. H. Crespi, Phys. Rev. Lett. 87, 125502 (2001).

    Article  ADS  Google Scholar 

  15. T. C. Fitzgibbons, M. Guthrie, E. Xu, V. H. Crespi, S. K. Davidowski, G. D. Cody, N. Alem, and J. V. Badding, Nature Mater. 14, 43 (2015).

    Article  ADS  Google Scholar 

  16. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  17. R. E. Roman, K. Kwan, and S. W. Cranford, Nano Lett. 15, 1585 (2015).

    Article  ADS  Google Scholar 

  18. H. Zhan, G. Zhang, V. B. C. Tan, Y. Cheng, J. M. Bell, Y.-W. Zhang, and Y. Gu, Nanoscale 8, 11177 (2016).

    Article  ADS  Google Scholar 

  19. E. Kaxiras and K. C. Pandey, Phys. Rev. Lett. 6, 2693 (1988).

    Article  ADS  Google Scholar 

  20. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  21. L. A. Openov and A. I. Podlivaev, Tech. Phys. Lett. 36, 31 (2010).

    Article  ADS  Google Scholar 

  22. A. I. Podlivaev and L. A. Openov, JETP Lett. 103, 185 (2016).

    Article  ADS  Google Scholar 

  23. A. I. Podlivaev and L. A. Openov, JETP Lett. 101, 173 (2015).

    Article  ADS  Google Scholar 

  24. G. V. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

  25. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Openov.

Additional information

Original Russian Text © L.A. Openov, A.I. Podlivaev, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 3, pp. 192–195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Openov, L.A., Podlivaev, A.I. Thermal stability of diamond-like carbon nanothreads. Jetp Lett. 104, 193–196 (2016). https://doi.org/10.1134/S0021364016150133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016150133

Navigation