Skip to main content

Electrical Conductivity of Carbon Nanotube- and Graphene-Based Nanocomposites

  • Chapter
  • First Online:
Micromechanics and Nanomechanics of Composite Solids

Abstract

Carbon nanotube- and graphene-based polymer nanocomposites are known to have exceptional electrical conductivity even at very low filler loading. In this chapter we present a widely useful composite model for studying this property. This model has the capability of determining both the effective electrical conductivity and the percolation threshold of the nanocomposites. It also embodies several other important elements of the process of conduction, including filler loading, filler agglomeration, anisotropic property of carbon fillers, effect of imperfect interfaces, and the contribution of electron tunneling. The backbone of the model is the effective-medium theory with a perfect interface; it can demonstrate the percolation feature and can also comply with the Hashin-Shtrikman bounds. To study the influence of filler agglomeration, a two-scale approach is further proposed. The imperfect interface is incorporated into the model by the introduction of a thin, weak interface surrounding each inclusion. To account for the effect of electron tunneling, Cauchy’s statistical distribution function is further introduced to reflect the increased activity of electron tunneling at and after the percolation threshold. It is demonstrated that the theoretical predictions based on the developed model are in close agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar, J., Bautista-Quijano, J., Avilés, F.: Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Express Polym Lett. 4, 292–299 (2010)

    Article  Google Scholar 

  • Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)

    Article  Google Scholar 

  • Balberg, I., Binenbaum, N., Wagner, N.: Percolation thresholds in the three-dimensional sticks system. Phys. Rev. Lett. 52, 1465–1468 (1984)

    Article  Google Scholar 

  • Bao, W.S., Meguid, S.A., Zhu, Z.H., Weng, G.J.: Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 111, 093726 (2012)

    Article  Google Scholar 

  • Bao, W.S., Meguid, S.A., Zhu, Z.H., Pan, Y., Weng, G.J.: Effect of carbon nanotube geometry upon tunneling assisted electrical network in nanocomposites. J. Appl. Phys. 113, 234313 (2013)

    Article  Google Scholar 

  • Barai, P., Weng, G.J.: A theory of plasticity for carbon nanotube reinforced composites. Int. J. Plast. 27, 539–559 (2011)

    Article  MATH  Google Scholar 

  • Bauhofer, W., Kovacs, J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009)

    Article  Google Scholar 

  • Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)

    Article  Google Scholar 

  • Bruggeman, D.A.G.: Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24, 636–664 (1935)

    Article  Google Scholar 

  • Budiansky, B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids. 13, 223–227 (1965)

    Article  Google Scholar 

  • Castañeda, P.P., Willis, J.R.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids. 43, 1919–1951 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee, A.P.: A percolation-based model for the conductivity of nanofiber composites. J. Chem. Phys. 139, 224904 (2013)

    Article  Google Scholar 

  • Deng, F., Zheng, Q.-S.: An analytical model of effective electrical conductivity of carbon nanotube composites. Appl. Phys. Lett. 92, 071902 (2008)

    Article  Google Scholar 

  • Duan, H.L., Karihaloo, B.L.: Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Phys. Rev. B. 75, 064206 (2007)

    Article  Google Scholar 

  • Duan, H.L., Karihaloo, B.L., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys. Rev. B. 73, 174203 (2006)

    Article  Google Scholar 

  • Dunn, M.L., Taya, M.: The effective thermal conductivity of composites with coated reinforcement and the application to imperfect interfaces. J. Appl. Phys. 73, 1711–1722 (1993)

    Article  Google Scholar 

  • Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London A. 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, C., Jiang, L.: Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos. Part A Appl. Sci. Manuf. 47, 143–149 (2013)

    Article  Google Scholar 

  • Gao, L., Li, Z.: Effective medium approximation for two-component nonlinear composites with shape distribution. J. Phys. Condens. Matter. 15, 4397 (2003)

    Article  Google Scholar 

  • Gardea, F., Lagoudas, D.C.: Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos. Part B Eng. 56, 611–620 (2014)

    Article  Google Scholar 

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  • Hashin, Z.: Thin interphase/imperfect interface in conduction. J. Appl. Phys. 89, 2261–2267 (2001)

    Article  Google Scholar 

  • Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)

    Article  MATH  Google Scholar 

  • Hatta, H., Taya, M.: Effective thermal conductivity of a misoriented short fiber composite. J. Appl. Phys. 58, 2478–2486 (1985)

    Article  Google Scholar 

  • He, L., Tjong, S.C.: Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Res. Lett. 8, 1–7 (2013)

    Article  Google Scholar 

  • Hernández, J.J., García-Gutiérrez, M.C., Nogales, A., Rueda, D.R., Kwiatkowska, M., Szymczyk, A., Roslaniec, Z., Concheso, A., Guinea, I., Ezquerra, T.A.: Influence of preparation procedure on the conductivity and transparency of SWCNT-polymer nanocomposites. Compos. Sci. Technol. 69, 1867–1872 (2009)

    Article  Google Scholar 

  • Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids. 13, 213–222 (1965)

    Article  Google Scholar 

  • Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779–784 (1952)

    Article  Google Scholar 

  • Li, C., Chou, T.-W.: Continuum percolation of nanocomposites with fillers of arbitrary shapes. Appl. Phys. Lett. 90, 174108 (2007)

    Article  Google Scholar 

  • Li, J., Ma, P.C., Chow, W.S., To, C. K, Tang, B.Z., Kim, J.K.: Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 17, 3207–3215 (2007b)

    Article  Google Scholar 

  • Li, C., Thostenson, E.T., Chou, T.-W.: Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl. Phys. Lett. 91, 223114 (2007a)

    Article  Google Scholar 

  • Ma, H.M., Gao, X.-L., Tolle, T.B.: Monte Carlo modeling of the fiber curliness effect on percolation of conductive composites. Appl. Phys. Lett. 96, 061910 (2010)

    Article  Google Scholar 

  • Martin, C.A., Sandler, J.K.W., Shaffer, M.S.P., Schwarz, M.K., Bauhofer, W., Schulte, K., Windle, A.H.: Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos. Sci. Technol. 64, 2309–2316 (2004)

    Article  Google Scholar 

  • Maxwell, J. C. A Treatise on Electricity and Magnetism, Vol. 1, 3rd ed. (Clarendon Press, Oxford, original 1891, reproduced 1982), p. 435–441

    Google Scholar 

  • McLachlan, D.S., Chiteme, C., Park, C., Wise, K.E., Lowther, S.E., Lillehei, P.T., Siochi, E.J., Harrison, J.S.: AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J. Polym. Sci. Part B Polym. Phys. 43, 3273–3287 (2005)

    Article  Google Scholar 

  • Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  • Nan, C.-W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)

    Article  Google Scholar 

  • Nan, C.-W., Shen, Y., Ma, J.: Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010)

    Article  Google Scholar 

  • Ngabonziza, Y., Li, J., Barry, C.F.: Electrical conductivity and mechanical properties of multiwalled carbon nanotube-reinforced polypropylene nanocomposites. Acta Mech. 220, 289–298 (2011)

    Article  MATH  Google Scholar 

  • Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.-H., Hamouda, A.M.S.: Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions. J. Appl. Phys. 110, 123715 (2011)

    Article  Google Scholar 

  • Pang, H., Chen, T., Zhang, G., Zeng, B., Li, Z.-M.: An electrically conducting polymer/graphene composite with a very low percolation threshold. Mater. Lett. 64, 2226–2229 (2010)

    Article  Google Scholar 

  • Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., Keblinski, P.: Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 89, 143119 (2006)

    Article  MATH  Google Scholar 

  • Reinecke, B.N., Shan, J.W., Suabedissen, K.K., Cherkasova, A.S.: On the anisotropic thermal conductivity of magnetorheological suspensions. J. Appl. Phys. 104, 023507 (2008)

    Article  Google Scholar 

  • Seidel, G.D., Lagoudas, D.C.: A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites. J. Compos. Mater. 43, 917–941 (2009)

    Article  Google Scholar 

  • Srivastava, N.K., Mehra, R.M.: Study of structural, electrical, and dielectric properties of polystyrene/foliated graphite nanocomposite developed via in situ polymerization. J. Appl. Polym. Sci. 109, 3991–3999 (2008)

    Article  Google Scholar 

  • Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature. 442, 282–286 (2006)

    Article  Google Scholar 

  • Tkalya, E., Ghislandi, M., Otten, R., Lotya, M., Alekseev, A., van der Schoot, P., Coleman, J., de With, G., Koning, C.: Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites. ACS Appl. Mater. Interfaces. 6, 15113–15121 (2014)

    Google Scholar 

  • Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M.: A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 115, 193706 (2014)

    Article  Google Scholar 

  • Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118, 065101 (2015)

    Article  Google Scholar 

  • Weng, G.J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  MATH  Google Scholar 

  • Weng, G.J.: The theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-Walpole bounds. Int. J. Eng. Sci. 28, 1111–1120 (1990)

    Google Scholar 

  • Weng, G.J.: A dynamical theory for the Mori–Tanaka and Ponte Castañeda–Willis estimates. Mech. Mater. 42, 886–893 (2010)

    Article  Google Scholar 

  • Xie, S.H., Liu, Y.Y., Li, J.Y.: Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl. Phys. Lett. 92, 243121 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the US National Science Foundation, Mechanics of Materials Program, under grant CMMI-1162431.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Weng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, Y., Weng, G.J. (2018). Electrical Conductivity of Carbon Nanotube- and Graphene-Based Nanocomposites. In: Meguid, S., Weng, G. (eds) Micromechanics and Nanomechanics of Composite Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-52794-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52794-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52793-2

  • Online ISBN: 978-3-319-52794-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics