Skip to main content
Log in

Topological defects in smectic islands in freely suspended films

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Textures created by point topological defects in defects in polar smectic films have been studied. Such defects have been created by the dynamic method (substance from a very thin film does not have time to approach its edges and thicker islands with a topological defect are controllably formed). Topological defects have been studied in smectic islands with a thickness of six to eight molecular layers in a film with a thickness of two molecular layers. Competition between two-dimensional orientational elasticity in islands and the orientation of the director at the boundary of smectic islands results in different configurations of the field of the c-director created by a topological defect. A transition between configurations occurs at a change in the dimension of islands and depends on the dipole polarization of a liquid crystal. The comparison of the numerical calculations of the structure of topological defects with experimental data has allowed determining the dependence of the anisotropy of the two-dimensional orientational elasticity on the polarization of smectic films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  2. S. A. Langer and J. P. Sethna, Phys. Rev. A 34, 5035 (1986).

    Article  ADS  Google Scholar 

  3. O. D. Lavrentovich, Liq. Cryst. 24, 117 (1998).

    Article  Google Scholar 

  4. M. Kleman and J. Friedel, Rev. Mod. Phys. 80, 61 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. H.-R. Trebin, Liq. Cryst. 24, 127 (1998).

    Article  Google Scholar 

  6. S. Digal, R. Ray, and A. M. Srivastava, Phys. Rev. Lett. 83, 5030 (1999).

    Article  ADS  Google Scholar 

  7. H. Mukai, P. R. G. Fernandes, B. F. de Oliveira, and G. S. Dias, Phys. Rev. E 78, 061704 (2007).

    Article  ADS  Google Scholar 

  8. V. A. Belyakov and V. E. Dmitrienko, Sov. Phys. Usp. 28, 535 (1985).

    Article  ADS  Google Scholar 

  9. R. D. Kamien and J. V. Selinger, J. Phys.: Condens. Matter 13, R1 (2001).

    ADS  Google Scholar 

  10. P. V. Dolganov, H. T. Nguyen, E. I. Kats, V. K. Dolganov, and P. Cluzeau, Phys. Rev. E 75, 031706 (2007).

    Article  ADS  Google Scholar 

  11. P. V. Dolganov and P. Cluzeau, Phys. Rev. E 78, 021701 (2008).

    Article  ADS  Google Scholar 

  12. P. V. Dolganov, E. I. Kats, and P. Cluzeau, Phys. Rev. E 81, 031709 (2010).

    Article  ADS  Google Scholar 

  13. I. Kraus and R. B. Meyer, Phys. Rev. Lett. 82, 3815 (1999).

    Article  ADS  Google Scholar 

  14. K.-K. Loh, I. Kraus, and R. B. Meyer, Phys. Rev. E 62, 5115 (2000).

    Article  ADS  Google Scholar 

  15. R. B. Meyer, D. Konovalov, I. Kraus, and J.-B. Lee, Mol. Cryst. Liq. Cryst. 364, 123 (2001).

    Article  Google Scholar 

  16. J.-B. Lee, D. Konovalov, and R. B. Meyer, Phys. Rev. E 73, 051705 (2006).

    Article  ADS  Google Scholar 

  17. J.-B. Lee, R. A. Pelcovits, and R. B. Meyer, Phys. Rev. E 75, 051701 (2007).

    Article  ADS  Google Scholar 

  18. A. Pattanaporkratana, C. S. Park, J. E. Maclennan, and N. A. Clark, Ferroelectrics 344, 71 (2006).

    Article  Google Scholar 

  19. D. R. Link, G. Natale, S. Shao, N. A. Clark, E. Korblova, and D. M. Walba, Science 84, 3665 (1997).

    Google Scholar 

  20. Y. Hatwalne and T. C. Lubensky, Phys. Rev. E 52, 6240 (1995).

    Article  ADS  Google Scholar 

  21. D. H. van Winkle and N. A. Clark, Phys. Rev. A 38, 1573 (1988).

    Article  ADS  Google Scholar 

  22. G. A. Hinshaw, Jr., R. G. Petschek, and R. A. Pelcovits, Phys. Rev. Lett. 60, 1864 (1988).

    Article  ADS  Google Scholar 

  23. P. V. Dolganov, V. K. Dolganov, and P. Cluzeau, J. Exp. Theor. Phys. 116, 1043 (2013).

    Article  ADS  Google Scholar 

  24. D. R. Link, N. Chattham, J. E. Maclennan, and N. A. Clark, Phys. Rev. E 71, 021704 (2005).

    Article  ADS  Google Scholar 

  25. C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, Phys. Rev. Lett. 40, 773 (1978).

    Article  ADS  Google Scholar 

  26. D. Andrienko and M. P. Allen, Phys. Rev. E 61, 504 (2000).

    Article  ADS  Google Scholar 

  27. P. V. Dolganov and P. Cluzeau, Phys. Rev. E 90, 062501 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Dolganov.

Additional information

Original Russian Text © P.V. Dolganov, N.S. Shuravin, V.K. Dolganov, E.I. Kats, 2015, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 101, No. 7, pp. 505–511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolganov, P.V., Shuravin, N.S., Dolganov, V.K. et al. Topological defects in smectic islands in freely suspended films. Jetp Lett. 101, 453–458 (2015). https://doi.org/10.1134/S0021364015070073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015070073

Keywords

Navigation