Skip to main content
Log in

Collapse of islands in freely suspended smectic nanofilms

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A time-nonlinear stage of the collapse of islands in freely suspended smectic nanofilms is observed and investigated. Islands thicker than a nanofilm are prepared and studied, which are unstable inside the dislocation loops, since they increase the energy of the film. Such instability leads to the decrease in the size of islands and is terminated by their collapse. The time dependence of the size of islands is measured experimentally. It is shown that the found dependence is in agreement with the theory of the dynamics of dislocation loops in smectic films developed earlier with allowance for the dissipation of energy in the film and in the meniscus. A nontrivial dynamic coupling between islands in a film resembling Ostwald ripening is also found, though the nonequilibrium kinetics of unstable islands, at which the hydrodynamic flow through a film leads to the decrease in sizes of one island and the increase in those of the other, rather than of the growth of the nucleation centers in the thermodynamically stable phase from the metastable state of the system (described by the Lifshitz–Slezov theory in films), is studied in our experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pieranski, L. Beliard, J.-Ph. Tournellec, X. Leoncini, C. Furtlehner, H. Dumoulin, E. Riou, B. Jouvin, J. P. Fénerol, Ph. Palaric, J. Heuving, B. Cartier, and I. Kraus, Physica A 194, 364 (1993).

    Article  ADS  Google Scholar 

  2. C. Bohley and R. Stannarius, Soft Matter 4, 683 (2008).

    Article  ADS  Google Scholar 

  3. F. Picano, P. Oswald, and E. Kats, Phys. Rev. E 63, 021705 (2001).

    Article  ADS  Google Scholar 

  4. R. Jaquet and F. Schneider, Phys. Rev. E 67, 021707 (2003).

    Article  ADS  Google Scholar 

  5. P. V. Dolganov, P. Cluzeau, J. Goly, V. K. Dolganov, and H. T. Nguyen, Phys. Rev. E 72, 031713 (2005).

    Article  ADS  Google Scholar 

  6. J. Israelachvili, Interaction and Surface Forces, 2nd ed. (Academic, London, 1992).

    Google Scholar 

  7. T. Stoebe, P. Mach, and C. C. Huang, Phys. Rev. Lett. 73, 1384 (1994).

    Article  ADS  Google Scholar 

  8. E. I. Demikhov, V. K. Dolganov, and K. P. Meletov, Phys. Rev. E 52, R1285 (1995).

    Article  ADS  Google Scholar 

  9. J.-Ch. Géminard, R. Holyst, and P. Oswald, Phys. Rev. Lett. 78, 1924 (1997).

    Article  ADS  Google Scholar 

  10. J.-Ch. Géminard, C. Laroche, and P. Oswald, Phys. Rev. E 58, 5923 (1998).

    Article  ADS  Google Scholar 

  11. F. Picano, R. Holyst, and P. Oswald, Phys. Rev. E 62, 3747 (2000).

    Article  ADS  Google Scholar 

  12. A. Zyvocinski, F. Picano, P. Oswald, and J.-Ch. Géminard, Phys. Rev. E 62, 8133 (2000).

    Article  ADS  Google Scholar 

  13. P. Oswald, P. Pieranski, F. Picano, and R. Holyst, Phys. Rev. Lett. 88, 015503 (2002).

    Article  ADS  Google Scholar 

  14. P. Oswald, F. Picano, and F. Caillier, Phys. Rev. E 68, 061701 (2003).

    Article  ADS  Google Scholar 

  15. A. Pattanaporkratana, C. S. Park, J. E. Maclennan, and N. A. Clark, Ferroelectrics 310, 131 (2004).

    Article  Google Scholar 

  16. Z. H. Nguyen, C. S. Park, J. Pang, and N. A. Clark, Proc. Natl. Acad. Sci. 109, 12873 (2012).

    Article  ADS  Google Scholar 

  17. P. Oswald and P. Pieranski, Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor and Francis, Boca Raton, FL, 2005).

    Book  Google Scholar 

  18. W. Z. Ostwald, Phys. Chem. 37, 385 (1901).

    Google Scholar 

  19. I. M. Lifshits and V. V. Slezov, Sov. Phys. JETP 8, 331 (1958).

    Google Scholar 

  20. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964).

    Google Scholar 

  21. J.-C. Loudet, P. V. Dolganov, P. Patricio, H. Saadaoui, and P. Cluzeau, Phys. Rev. Lett. 106, 117802 (2011).

    Article  ADS  Google Scholar 

  22. F. Caillier and P. Oswald, Phys. Rev. E 70, 031704 (2004).

    Article  ADS  Google Scholar 

  23. A. A. Sonin and D. Langevin, Europhys. Lett. 22, 271 (1993).

    Article  ADS  Google Scholar 

  24. A. Eremin, S. Baumgarten, K. Harth, and R. Stannarius, Phys. Rev. Lett. 107, 268301 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kats.

Additional information

Original Russian Text © P.V. Dolganov, E.I. Kats, V.K. Dolganov, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 106, No. 4, pp. 214–219.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolganov, P.V., Kats, E.I. & Dolganov, V.K. Collapse of islands in freely suspended smectic nanofilms. Jetp Lett. 106, 229–233 (2017). https://doi.org/10.1134/S002136401716007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401716007X

Navigation