Skip to main content
Log in

Effective electron mass in high-mobility SiGe/Si/SiGe quantum wells

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effective mass m* of the electrons confined in high-mobility SiGe/Si/SiGe quantum wells has been measured by the analysis of the temperature dependence of the Shubnikov-de Haas oscillations. In the accessible range of electron densities, n s , the effective mass has been found to grow with decreasing n s , obeying the relation m*/m b = n s /(n s n c ), where m b is the electron band mass and n c ≈ 0.54 × 1011 cm−2. In samples with maximum mobilities ranging between 90 and 220 m2/(V s), the dependence of the effective mass on the electron density has been found to be identical suggesting that the effective mass is disorder-independent, at least in the most perfect samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Shashkin, M. Rahimi, S. Anissimova, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. Lett. 91, 046403 (2003).

    Article  ADS  Google Scholar 

  2. V. M. Pudalov, M. E. Gershenson, H. Kojima, N. Butch, E. M. Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 88, 196404 (2002).

    Article  ADS  Google Scholar 

  3. A. A. Shashkin, A. A. Kapustin, E. V. Deviatov, V. T. Dolgopolov, and Z. D. Kvon, Phys. Rev. B 76, 241302(R) (2007).

    Article  ADS  Google Scholar 

  4. I. M. Lifshitz and A. M. Kosevich, Sov. Phys. JETP 2, 636 (1955).

    Google Scholar 

  5. A. Gold and V. T. Dolgopolov, Phys. Rev. B 33, 1076 (1986).

    Article  ADS  Google Scholar 

  6. G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 214204 (2001).

    Article  ADS  Google Scholar 

  7. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. B 66, 073303 (2002).

    Article  ADS  Google Scholar 

  8. V. M. Pudalov, M. E. Gershenson, H. Kojima, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 91, 126403 (2003).

    Article  ADS  Google Scholar 

  9. A. A. Shashkin, Phys. Usp. 48, 129 (2005).

    Article  ADS  Google Scholar 

  10. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. Lett. 87, 086801 (2001).

    Article  ADS  Google Scholar 

  11. O. Prus, Y. Yaish, M. Reznikov, U. Sivan, and V. M. Pudalov, Phys. Rev. B 67, 205407 (2003).

    Article  ADS  Google Scholar 

  12. A. A. Shashkin, S. Anissimova, M. R. Sakr, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. Lett. 96, 036403 (2006).

    Article  ADS  Google Scholar 

  13. A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Phys. Rev. Lett. 109, 096405 (2012).

    Article  ADS  Google Scholar 

  14. S. A. Vitkalov, M. P. Sarachik, and T. M. Klapwijk, Phys. Rev. B 65, 201106(R) (2002).

    Article  ADS  Google Scholar 

  15. The Electron Liquid Paradigm in Condensed Matter Physics, Ed. by G. F. Giuliani and G. Vignale (IOS Press, Amsterdam, 2004), p. 335.

    Google Scholar 

  16. V. M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 88, 076401 (2002).

    Article  ADS  Google Scholar 

  17. M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and V. A. Stephanovich, Theory of Heavy-Fermion Compounds (Springer, Berlin, 2014).

    Google Scholar 

  18. V. T. Dolgopolov and A. A. Shashkin, JETP Lett. 95, 570 (2012).

    Article  ADS  Google Scholar 

  19. A. Amaricci, A. Camjayi, K. Haule, G. Kotliar, D. Tanaskovic, and V. Dobrosavljevic, Phys. Rev. B 82, 155102 (2010).

    Article  ADS  Google Scholar 

  20. G. Fleury and X. Waintal, Phys. Rev. B 81, 165117 (2010).

    Article  ADS  Google Scholar 

  21. M. Marchi, S. De Palo, S. Moroni, and G. Senatore, Phys. Rev. B 80, 035103 (2009).

    Article  ADS  Google Scholar 

  22. A. Punnoose and A. M. Finkelstein, Science 310, 289 (2005).

    Article  ADS  Google Scholar 

  23. T. M. Lu, D. C. Tsui, C.-H. Lee, and C. W. Liu, Appl. Phys. Lett. 94, 182102 (2009).

    Article  ADS  Google Scholar 

  24. T. M. Lu, D. C. Tsui, C.-H. Lee, and C. W. Liu, Appl. Phys. Lett. 97, 059904 (2009).

    Article  ADS  Google Scholar 

  25. T. M. Lu, C.-H. Lee, S.-H. Huang, D. C. Tsui, and C. W. Liu, Appl. Phys. Lett. 99, 153510 (2011).

    Article  ADS  Google Scholar 

  26. A. A. Shashkin, E. V. Deviatov, V. T. Dolgopolov, A. A. Kapustin, S. Anissimova, A. Venkatesan, S. V. Kravchenko, and T. M. Klapwijk, Phys. Rev. B 73, 115420 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Melnikov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, M.Y., Shashkin, A.A., Dolgopolov, V.T. et al. Effective electron mass in high-mobility SiGe/Si/SiGe quantum wells. Jetp Lett. 100, 114–119 (2014). https://doi.org/10.1134/S0021364014140094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014140094

Keywords

Navigation