Skip to main content
Log in

Spin-motive force and orbital-motive force: from magnon Bose-Einstein condensation to chiral Weyl superfluids

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Spin-motive geometric force acting on electrons in metallic ferromagnets is extended to spin-motive force in magnon Bose-Einstein condensate, which is represented by phase-coherent precession of magnetization, and to the orbital-motive force in superfluid 3He-A. In 3He-A there are two contributions to the orbitalmotive force. One of them comes from the chiral nature of this liquid. Another one originates from chiral Weyl fermions living in the vicinity of the topologically protected Weyl points, and is related to the phenomenon of chiral anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Berger, Phys. Rev. B 33, 1572 (1986).

    Article  ADS  Google Scholar 

  2. G. E. Volovik, J. Phys. C 20, L83 (1987).

    Article  ADS  Google Scholar 

  3. S. E. Barnes and S. Maekawa, Phys. Rev. Lett. 98, 246601 (2007).

    Article  ADS  Google Scholar 

  4. S. A. Yang, G. S. D. Beach, C. Knutson, et al., Phys. Rev. Lett. 102, 067201 (2009).

    Article  ADS  Google Scholar 

  5. Y. Yamane, K. Sasage, T. An, et al., Phys. Rev. Lett. 107, 236602 (2011).

    Article  ADS  Google Scholar 

  6. M. Hayashi, J. Ieda, Y. Yamane, et al., Phys. Rev. Lett. 108, 147202 (2012).

    Article  ADS  Google Scholar 

  7. N. Nakabayashi and G. Tatara, arXiv:1308.0152.

  8. Yu. M. Bunkov and G. E. Volovik, in Novel Superfluids, Ed. by K. H. Bennemann and J. B. Ketterson, International Series of Monographs on Physics, No. 156 (2013), Vol. 1, Ch. 4, p. 253; arXiv:1003.4889.

  9. I. E. Dzyaloshinskii and G. E. Volovik, J. Phys. 39, 693 (1978).

    Article  Google Scholar 

  10. V. P. Mineev and G. E. Volovik, J. Low Temp. Phys. 89, 823 (1992).

    Article  ADS  Google Scholar 

  11. F. Wilczek, arXiv:1308.5949.

  12. R. J. Zieve, Yu. Mukharsky, J. D. Close, et al., Phys. Rev. Lett. 68, 1327 (1992).

    Article  ADS  Google Scholar 

  13. T. Sh. Misirpashaev and G. E. Volovik, JETP Lett. 56, 41 (1992).

    ADS  Google Scholar 

  14. R. E. Packard, Rev. Mod. Phys. 70, 641 (1998).

    Article  ADS  Google Scholar 

  15. Y. Tserkovnyak and A. Brataas, Phys. Rev. B 71, 052406 (2005).

    Article  ADS  Google Scholar 

  16. P. M. Walmsley and A. I. Golov, Phys. Rev. Lett. 109, 215301 (2012).

    Article  ADS  Google Scholar 

  17. G. E. Volovik and M. Krusius, Physics 5, 130 (2012).

    Article  Google Scholar 

  18. H. Ikegami, Y. Tsutsumi, and K. Kono, Science 341, 59 (2013).

    Article  ADS  Google Scholar 

  19. N. D. Mermin and T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976).

    Article  ADS  Google Scholar 

  20. D. Vollhardt and P. Wölfle,, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).

    Google Scholar 

  21. D. N. Paulson, M. Krusius, and J. C. Wheatley, Phys. Rev. Lett. 37, 599 (1976).

    Article  ADS  Google Scholar 

  22. G. E. Volovik, JETP Lett. 27, 573 (1978).

    ADS  Google Scholar 

  23. G. E. Volovik, JETP Lett. 46, 98 (1987).

    ADS  Google Scholar 

  24. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  25. G. Basar, D. E. Kharzeev, and I. Zahed, arXiv:1307.2234.

  26. G. Basar, D. E. Kharzeev, and H.-U. Yee, arXiv:1305.6338.

  27. D. Th. Son and N. Yamamoto, Phys. Rev. Lett. 109, 181602 (2012).

    Article  ADS  Google Scholar 

  28. D. Th. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013).

    Article  ADS  Google Scholar 

  29. V. Aji, Phys. Rev. B 85, 241101(R) (2012).

    Article  ADS  Google Scholar 

  30. A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).

    Article  ADS  Google Scholar 

  31. A. V. Nikiforov and E. B. Sonin, J. Exp. Theor. Phys. 58, 373 (1983).

    Google Scholar 

  32. G. E. Volovik, JETP Lett. 44, 185 (1986).

    ADS  Google Scholar 

  33. T. D. C. Bevan, A. J. Manninen, J. B. Cook, et al., Nature 386, 689 (1997).

    Article  ADS  Google Scholar 

  34. J. A. Sauls, Phys. Rev. B 84, 214509 (2011).

    Article  ADS  Google Scholar 

  35. G. E. Volovik, JETP Lett. 61, 958 (1995).

    ADS  Google Scholar 

  36. P. J. Heikkinen, S. Autti, V. B. Eltsov, et al., arXiv:1307.6782.

  37. V. B. Eltsov, P. J. Heikkinen, and V. V. Zavjalov, arXiv:1302.0764.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volovik, G.E. Spin-motive force and orbital-motive force: from magnon Bose-Einstein condensation to chiral Weyl superfluids. Jetp Lett. 98, 480–483 (2013). https://doi.org/10.1134/S0021364013210145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013210145

Keywords

Navigation