Skip to main content
Log in

A Distributed Acoustic Sensor with a 120-km Sensing Range Based on a Phase-Sensitive Optical Time-Domain Reflectometer and a Remotely Pumped Erbium-Doped Fiber Amplifier

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

The operating range of a distributed acoustic sensor based on a phase-sensitive optical time-domain reflectometer has been increased using an erbium-doped fiber amplifier with remote forward pumping. It is shown that by incorporating a single segment of erbium-doped fiber at a distance of 70 km and pumping it from the front end by a 500-mW laser at a wavelength of 1480 nm over the sensing fiber, it is possible to increase the operating range of the reflectometer by 45 km and, thereby, obtain the total operating range as large as 120 km along a standard single-mode fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Muratov, E.M., Materialy Vsyrossiiskoi nauchno-tekhnicheskoi i nauchno-metodicheskoi konferentsii magistrantov i ikh rukovoditelei “Podgotovka professional’nykh kadrov v magistrature dlya tsifrovoi ekonomiki” (PKM-2020), St.Petersburg, 2020 (Proc. All-Russian Scientific-Technical and Scientific-Methodical Conference of Undergraduates and their Supervisors “Training of Professional Staff in the Master’s Degree Program for the Digital Economy” (PCM-2020), St. Petersburg, 2020), St. Petersburg: Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 2021, p. 201.

  2. Stajanca, P., Chruscicki, S., Homann, T., Seifert, S., Schmidt, D., and Habib, A., Sensors, 2018, vol. 18, p. 2841. https://doi.org/10.3390/s18092841

    Article  ADS  Google Scholar 

  3. Wu, H.Y., Qian, Y., Li, H., Xiao, S., Fu, Z., and Rao, Y., Proc. Conference “CLEO: Applications and Technology,” San Jose, CA, 2015, p. ATu1M.4. https://doi.org/10.1364/CLEO_AT.2015.ATu1M.4

  4. Bukharin, M.A. and Shishkov, K.V., Zheleznodorozhn. Transp., 2020, no. 4, p. 58.

  5. Bukharin, M.A., Prokopenko, S.V., Gurtovoi, K.V., Skubchenko, S.A., and Treshchikov, V.N., Avtomatika, Svyaz’, Informatika, 2019, no. 9, p. 8.

  6. Mateeva, A., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Lopez, J., and Roy, J., in SEG Technical Program Expanded Abstracts 2012, Society of Exploration Geophysicists, 2012, p. 1.

    Google Scholar 

  7. Nikitin, S.P., Kuzmenkov, A.I., Gorbulenko, V.V., Nanii, O.E., and Treshchikov, V.N., Laser Phys., 2018, vol. 28, p. 085107. https://doi.org/10.1088/1555-6611/aac714

    Article  ADS  Google Scholar 

  8. Bukharin, M.A., Spiridonov, E.P., Filyutich, E.A., Ostapenko, D.A., Nurullin, A.A., and Treshchikov, V.N., Foton-Ekspres, 2021, no. 6 (174), p. 249.

  9. Shatalin, S.V., Treschikov, V.N., and Rogers, A.J., Appl. Opt., 1998, vol. 37, p. 5600.

    Article  ADS  Google Scholar 

  10. Parker, T., Shatalin, S., and Farhadiroushan, M., First Break, 2014, vol. 32, p. 63. https://doi.org/10.3997/1365-2397.2013034

    Article  Google Scholar 

  11. Mestayer, J., Cox, B., Wills, P., Kiyashchenko, D., Lopez, J., Costello, M., Bourne, S., Ugueto, G., Lupton, R., Solano, G., Hill, D., and Lewis, A., in SEG Technical Program Expanded Abstracts 2011, Society of Exploration Geophysicists, 2011, p. 4253. https://doi.org/10.1190/1.3628095

  12. Nikitin, S.P., Ulanovskiy, P.I., Kuzmenkov, A.I., Nanii, O.E., and Treshchikov, V.N., Laser Phys., 2016, vol. 26, p. 105106. https://doi.org/10.1088/1054-660X/26/10/105106

    Article  ADS  Google Scholar 

  13. Alekseev, A.E., Vdovenko, V.S., Gorshkov, B.G., Potapov, V.T., and Simikin, D.E., Laser Phys., 2016, vol. 26, p. 035101. https://doi.org/10.1088/1054-660X/26/3/035101

    Article  ADS  Google Scholar 

  14. Kharasov, D.R., Churilin, I.A., Nikitin, S.P., Nanii, O.E., and Treshchikov, V.N., Materialy 8-ogo Rossiiskogo seminara po volokonnym lazeram (Proc. 8th Russian Seminar on Fiber Lasers), Novosibirsk, 2018, p. 208. https://doi.org/10.31868/RFL2018.208-210

  15. Martins, H.F., Martın-Lopez, S., Corredera, P., Filograno, M.L., Frazao, O., and Gonzalez-Herraez, M., J. Lightwave Technol., 2014, vol. 32, p. 1510. https://doi.org/10.1109/JLT.2014.2308354

    Article  ADS  Google Scholar 

  16. Martins, H.F., Martın-Lopez, S., Corredera, P., Filograno, M.L., Frazao, O., and Gonzalez-Herraez, M., J. Lightwave Technol., 2015, vol. 33, p. 2628. https://doi.org/10.1109/JLT.2015.2396359

    Article  ADS  Google Scholar 

  17. Peng, F., Peng, Z.P., Jia, X.H., Rao, Y.J., Wang, Z.N., and Wu, H., Proc. Optical Fiber Communication Conference, San Francisco, 2014, p. M3J.4. https://doi.org/10.1364/OFC.2014.M3J.4

  18. Kharasov, D.R., Naniy, O.E., Nikitin, S.P., and Treschikov, V.N., Proc. 2018 Int. Conference Laser Optics (ICLO), St. Petersburg, 2018, p. 285. https://doi.org/10.1109/LO.2018.8435872

  19. Kharasov, D.R., Fomiryakov, E.A., Nikitin, S.P., Nanii, O.E., and Treshchikov, V.N., Proc. 2020 Int. Conference Laser Optics (ICLO), St. Petersburg, 2020, p. 1. https://doi.org/10.1109/ICLO48556.2020.9285481

  20. Kharasov, D.R., Fomiryakov, E.A., Bengalskii, D.M., Nikitin, S.P., Nanii, O.E., and Treshchikov, V.N., Proc. 2022 Int. Conference Laser Optics (ICLO), St. Petersburg, 2022, p. 1. https://doi.org/10.1109/ICLO54117.2022.9840022

  21. Wang, Z.N., Li, J., Fan, M.Q., Zhang, L., Peng, F., Wu, H., Zeng, J.J., Zhou, Y., and Rao, Y.J., Opt. Lett., 2014, vol. 39, p. 4313. https://doi.org/10.1364/OL.39.004313

    Article  ADS  Google Scholar 

  22. Arioka, T. and Nakamura, K., Opt. Commun., 2022, vol. 1, p. 1375. https://doi.org/10.1364/OPTCON.460475

    Article  Google Scholar 

  23. Tian, X., Dang, R., Tan, D., Liu, L., and Wang, H., Proc. SPIE, 2016, vol. 10158, p. 101580P. https://doi.org/10.1117/12.2246763

    Article  Google Scholar 

  24. Sha, Z., Feng, H., Shi, Y., Zhang, W., and Zeng, Z., IEEE Photonics Technol. Lett., 2017, vol. 29, no. 16, p. 1308. https://doi.org/10.1109/LPT.2017.2721963

    Article  ADS  Google Scholar 

  25. Van Putten, L.D., Masoudi, A., and Brambilla, G., Opt. Lett., 2019, vol. 44, p. 5925. https://doi.org/10.1364/OL.44.005925

    Article  ADS  Google Scholar 

  26. OFS AcoustiSens Product Description. https://www.ofsoptics.com/wp-content/uploads/AcoustiSens-Wideband-GS86545-web.pdf. Accessed January 23, 2023.

  27. Kharasov, D.R., Bengalskii, D.M., Fomiryakov, E.A., Nanii, O.E., Bukharin, M.A., Nikitin, S.P., and Treshchikov, V.N., Moscow Univ. Phys. Bull., 2021, vol. 76, no. 3, p. 167. https://doi.org/10.3103/S0027134921030048

    Article  ADS  Google Scholar 

  28. Farhadiroushan, M., Proc. 80th EAGE Conference and Exhibition 2018, Copenhagen, 2018, p. cp-556-00043. https://doi.org/10.3997/2214-4609.201801921

  29. Lalam, N., Lu, P., Buric, M., and Ohodnicki, P.R., Proc. SPIE, 2020, vol. 11287, p. 165. https://doi.org/10.1117/12.2545089

    Article  Google Scholar 

  30. Kharasov, D.R., Bengalskii, D.M., Vyatkin, M.Yu., Nanii, O.E., Fomiryakov, E.A., Nikitin, S.P., Popov, S.M., Chamorovsky, Yu.K., and Treshchikov, V.N., Quantum Electron., 2020, vol. 50, p. 510. https://doi.org/10.1070/QEL17232

    Article  ADS  Google Scholar 

  31. Cedilnik, G., Lees, G., Schmidt, P.E., Herstrøm, S., and Geisler, T., IEEE Sens. Lett., 2019, vol. 3, p. 1. https://doi.org/10.1109/LSENS.2019.2895249

    Article  Google Scholar 

  32. Masoudi, A., Beresna, M., and Brambilla, G., Opt. Lett., 2021, vol. 46, p. 552. https://doi.org/10.1364/OL.413206

    Article  ADS  Google Scholar 

  33. Yu, J., Liu, J., Hu, Q., Xu, J., Nie, M., Chen, X., Wu, J., Zhang, X. Liu, H., Yu, S., Li, G., and Qin, X., Proc. Conference “Optical Fiber Sensors 2022,” Alexandria, VA, 2022, p. Th4.11. https://doi.org/10.1364/OFS.2022.Th4.11

  34. Wang, Z.N., Zeng, J.J., Li, J., Fan, M.Q., Wu, H., Peng, F., Zhang, L., Zhou, Y., and Rao, Y.J., Opt. Lett., 2014, vol. 39, p. 5866. https://doi.org/10.1364/OL.39.005866

    Article  ADS  Google Scholar 

  35. Headley, C. and Agrawal, G.P., Raman Amplification in Fiber Optical Communication Systems, Elsevier, 2005.

    Google Scholar 

  36. Shikhaliev, I.I., Gainov, V.V., Dorozhkin, A.N., Nanii, O.E.E., Konyshev, V.A., and Treshchikov, V.N., Quantum Electron., 2017, vol. 47, p. 906. https://doi.org/10.1070/QEL16405

    Article  ADS  Google Scholar 

  37. Bertholds, A. and Dandliker, R., J. Lightwave Technol., 1988, vol. 6, p. 17. https://doi.org/10.1109/50.3956

    Article  ADS  Google Scholar 

  38. Nikitin, S., Fomiryakov, E., Kharasov, D., Nanii, O., and Treshchikov, V., J. Lightwave Technol., 2019, vol. 38, p. 1446. https://doi.org/10.1109/JLT.2019.2952688

    Article  ADS  Google Scholar 

  39. Gabai, H. and Eyal, A., Proc. SPIE, 2017, vol. 10323, p. 103238A. https://doi.org/10.1117/12.2265527

    Article  Google Scholar 

  40. Fomiryakov, E.A., Kharasov, D.R., Nikitin, S.P., Nanii, O.E., and Treshchikov, V.N., Foton-Ekspress, 2021, no. 6 (174), p. 252. https://doi.org/10.24412/2308-6920-2021-6-252-253

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dudin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Goryacheva

International conference “Optical Reflectometry, Metrology & Sensing 2023,” Russia, Perm, 24–26, May 2023)..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudin, A.S., Kharasov, D.R., Fomiryakov, E.A. et al. A Distributed Acoustic Sensor with a 120-km Sensing Range Based on a Phase-Sensitive Optical Time-Domain Reflectometer and a Remotely Pumped Erbium-Doped Fiber Amplifier. Instrum Exp Tech 66, 795–801 (2023). https://doi.org/10.1134/S0020441223050184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223050184

Navigation