Skip to main content
Log in

A Fiber Phase-Sensitive Optical Time-Domain Reflectometer for Engineering Geology Application

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

A new architecture of a fiber phase-sensitive optical time-domain reflectometer (φ-OTDR, i.e., a distributed acoustic sensor) suitable for engineering geology application is proposed. The sensor is based on a double-pulse scheme in which a pair of pulses is formed using an unbalanced Michelson interferometer. A symmetrical 3 × 3 coupler built into the Michelson interferometer is used to obtain the phase delay needed for the demodulation of the backscattered light. Using the unbalanced Michelson interferometer in the circuit for dual-pulse probe signal generation, it is possible to reduce the requirements for the degree of coherence of the light source, since the delay line introduced between the dual-pulse parts is compensated in the φ‑OTDR fiber under test. As a result, it is possible to use a laser with a wide spectral line (~1 GHz) and generate short (7-ns-wide) laser pulses by directly modulating the laser-diode injection current. In order to reduce the signal fading in the φ-OTDR and to improve the linearity of its response, responses are averaged over 16 optical frequencies. The efficiency of the proposed distributed acoustic sensor has been demonstrated by detecting a strong impact on a cable that was horizontally buried in the ground as well as by detecting seismic waves using a cable inserted in a well at the sea bottom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Grandi, S., Hornman, K., Kuvshinov, B., Berlang, W., Yang, Zh., and Detomo, R., Geophys. Prospect., 2014, vol. 62, p. 679. https://www.earthdoc.org/content/journals/10.1111/1365-2478.12116.

    Article  ADS  Google Scholar 

  2. Fernández-Ruiz, M.R., Soto, M.A., Williams, E.F., Martin-Lopez, S., Zhan, Z., Gonzalez-Herraez, M., and Martins, H.F., APL Photonics, 2020, vol. 5, p. 030901. https://aip.scitation.org/doi/full/10.1063/1.5139602.

    Google Scholar 

  3. Williams, E.F., Fernández-Ruiz, M.R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., and Martins, H.F., Nat. Commun., 2019, vol. 10, p. 1. https://www.nature.com/articles/s41467-019-13262-7.

    Article  Google Scholar 

  4. Bakulin, A., Silvestrov, I., and Pevzner, R., Leading Edge, 2020, vol. 39, p. 808. https://doi.org/10.1190/tle39110808.1

    Article  Google Scholar 

  5. Gorshkov, B.G., Yüksel, K., Fotiadi, A.A., Wuilpart, M., Korobko, D.A., Zhirnov, A.A., Konstantin, V.S., Turov, A.T., Konstantinov, Y.A., and Lobach, I.A., Sensors, 2022, vol. 22, p. 1033. https://www.mdpi.com/1424-8220/22/3/1033/htm.

    Article  ADS  Google Scholar 

  6. Alekseev, A.E., Gorshkov, B.G., and Potapov, V.T., Laser Phys., 2019, vol. 29, p. 055106. https://iopscience.iop.org/article/10.1088/1555-6611/ab0d15.

    Article  ADS  Google Scholar 

  7. Gorshkov, B.G., Alekseev, A.E., Taranov, M.A., Simikin, D.E., Potapov, V.T., and Ilinskiy, D.A., Appl. Opt., 2022, vol. 61, p. 8308. https://doi.org/10.1364/AO.468804

    Article  ADS  Google Scholar 

  8. Hartog, A.H., An Introduction to Distributed Optical Fibre Sensors, CRC Press, 2017.

    Book  Google Scholar 

  9. Posey, R., Jr., Johnson, G.A., and Vohra, S.T., Electron. Lett., 2000, vol. 36, p. 1688. https://digital-library.theiet.org/content/journals/10.1049/el_20001200.

    Article  ADS  Google Scholar 

  10. Masoudi, A., Belal, M., and Newson, T.P., Meas. Sci. Technol., 2013, vol. 24, p. 085204. https://iopscience.iop.org/article/10.1088/0957-0233/24/8/085204/.

    Article  ADS  Google Scholar 

  11. Dakin, J.P. and Lamb, C., UK Patent GB2222247A, 1990. https://patents.google.com/patent/GB2222247A/en.

  12. Alekseev, A.E., Vdovenko, V.S., Gorshkov, B.G., Potapov, V.T., and Simikin, D.E., Laser Phys., 2014, vol. 24, p. 115106. https://iopscience.iop.org/article/10.1088/1054-660X/24/11/115106.

    Article  ADS  Google Scholar 

  13. Alekseev, A.E., Vdovenko, V.S., Gorshkov, B.G., Potapov, V.T., and Simikin, D.E., Laser Phys., 2015, vol. 25, p. 065101. https://iopscience.iop.org/article/10.1088/1054-660X/25/6/065101/.

    Article  ADS  Google Scholar 

  14. Nikitin, S.P., Kuzmenkov, A.I., Gorbulenko, V.V., Nanii, O.E., and Treshchikov, V.N., Laser Phys., 2018, vol. 28, p. 085107. https://iopscience.iop.org/article/10.1088/1555-6611/aac714/meta.

    Article  ADS  Google Scholar 

  15. Hartog, A. and Kader, K., US Patent 9170149, 2015. https://patents.google.com/patent/US9170149B2/en.

  16. Lu, Y., Zhu, T., Chen, L., and Bao, X., J. Lightwave Technol., 2010, vol. 28, p. 3243. https://opg.optica.org/jlt/abstract.cfm?uri=jlt-28-22-3243.

    ADS  Google Scholar 

  17. Gorshkov, B.G., Alekseev, A.E., Simikin, D.E., Taranov, M.A., Zhukov, K.M., and Potapov, V.T., Sensors, 2022, vol. 22, p. 9482. https://doi.org/10.3390/s22239482

    Article  ADS  Google Scholar 

  18. Alekseev, A.E., Gorshkov, B.G., Bashaev, A.V., Potapov, V.T., Taranov, M.A., and Simikin, D.E., Laser Phys., 2021, vol. 31, p. 035101. https://iopscience.iop.org/article/10.1088/1555-6611/abd936/meta.

    Article  ADS  Google Scholar 

  19. Hartog, A.H., Kotov, O.I., and Liokumovich, L.B., Proc. 2nd EAGE Workshop on Permanent Reservoir Monitoring 2013 – Current and Future Trends, Stavanger, July 2–5, 2013, p. 351. https://doi.org/10.3997/2214-4609.20131301.

  20. Alekseev, A.E., Gorshkov, B.G., and Potapov, V.T., Laser Phys., 2019, vol. 29, p. 055106. https://iopscience.iop.org/article/10.1088/1555-6611/ab0d15/meta.

    Article  ADS  Google Scholar 

  21. Alekseev, A.E., Gorshkov, B.G., Potapov, V.T., Taranov, M.A., and Simikin, D.E., Laser Phys., 2020, vol. 30, p. 035107. https://iopscience.iop.org/article/10.1088/1555-6611/ab70b0/meta.

    Article  ADS  Google Scholar 

  22. Alekseev, A.E., Gorshkov, B.G., Potapov, V.T., Taranov, M.A., and Simikin, D.E., Appl. Opt., 2022, vol. 61, p. 231. https://opg.optica.org/ao/abstract.cfm?uri=ao-61-1-231.

    Article  ADS  Google Scholar 

  23. Hartog, A.H., Liokumovich, L.B., Ushakov, N.A., Kotov, O.I., Dean, T., Cuny, T., Constantinou, A., and Englich, F.V., Geophys. Prospect., 2018, vol. 66, p. 192.https://doi.org/10.1111/1365-2478.12612

    Article  ADS  Google Scholar 

  24. Ogden, H.M., Murray, M.J., Murray, J.B., Kirkendall, C., and Redding, B., Sci. Rep., 2021, vol. 11, p. 1. https://www.nature.com/articles/s41598-021-97647-z.

    Article  Google Scholar 

  25. Mermelstein, M.D., Posey, R., Johnson, G.A., and Vohra, S.T., Opt. Lett., 2001, vol. 26, p. 58. https://doi.org/10.1364/OL.26.000058

    Article  ADS  Google Scholar 

  26. Sudakova, M.S., Belov, M.V., Ponimaskin, A.O., Pirogova, A.S., Tokarev, M.Yu., and Kolyubakin, A.A., Geofizika, 2021, vol. 6, p. 111. https://elibrary.ru/item.asp?id=47926026.

    Google Scholar 

Download references

Funding

This work was supported in part by the state assignment for the Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Alekseev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Goryacheva

“Optical Reflectometry, Metrology, & Sensing 2023,” International Conference, Russia, Perm, May 24–26, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, A.E., Gorshkov, B.G., Potapov, V.T. et al. A Fiber Phase-Sensitive Optical Time-Domain Reflectometer for Engineering Geology Application. Instrum Exp Tech 66, 843–848 (2023). https://doi.org/10.1134/S0020441223050020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223050020

Navigation