Skip to main content
Log in

Experimental Investigations Into Characteristics of Mandelshtam–Brillouin Scattering in Single-Mode Optical Fiber of Various Types

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of experimental studies into the Mandelstam–Brillouin scattering characteristics are presented for single-mode optical fibers of various types and manufacturers. The experimental dependences of optical fibers obtained using a Brillouin optical reflectometer (graphs of the distribution of the Brillouin scattering spectrum along the length of the fiber and multireflectograms) are presented. For each type of optical fibers considered, an estimate of the Brillouin frequency shift is given, the value of which, at wavelengths of laser radiation used in telecommunication systems, refers to the microwave range. The frequency dependences of the Mandelstam–Brillouin scattering characteristics of some varieties of single-mode optical fibers with different cutoff wavelengths are presented. A comparative analysis of their characteristics with the characteristics of previously studied single-mode optical fibers is carried out. Optical fibers of similar varieties (but different manufacturers) can have noticeable differences in the frequency response of Mandelstam–Brillouin scattering. A table with the main characteristics of Mandelstam–Brillouin scattering is presented for all experimentally studied single-mode optical fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bogachkov, I.V., J. Phys.: Conf. Ser., 2018, vol. 1015, p. 1. https://doi.org/10.1088/1742-6596/1015/2/022004

    Article  Google Scholar 

  2. Bogachkov, I.V. and Gorlov, N.I., J. Phys.: Conf. Ser., 2022, vol. 2182, p. 1. https://doi.org/10.1088/1742-6596/2182/1/012089

    Article  Google Scholar 

  3. Bogachkov, I.V., T-Comm, 2019, vol. 13, no. 1, p. 60.

    Google Scholar 

  4. Bogachkov, I.V. and Gorlov, N.I., J. Phys.: Conf. Ser., 2021, vol. 1791, p. 1. https://doi.org/10.1088/1742-6596/1791/1/012039

    Article  Google Scholar 

  5. Bogachkov, I.V. and Trukhina, A.I., Proc. Conference “2018 Systems of Signals Generating and Processing in the Field of on Board Communications,” Moscow, 2018, p. 1. https://doi.org/10.1109/SOSG.2018.8350574

  6. Kobyakov, A., Sauer, M., and Chowdhury, D., Adv. Opt. Photonics, 2010, vol. 2, p. 1.

    Article  ADS  Google Scholar 

  7. Ruffin, A.B., Li, M.-J., Chen, X., Kobyakov, A., and Annunziata, F., Opt. Lett., 2005, vol. 30, p. 3123.

    Article  ADS  Google Scholar 

  8. Gorlov, N.I. and Bogachkov, I.V., Proc. Conference “Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO-2020), Kaliningrad, 2020, p. 1. https://doi.org/10.1109/SYNCHROINFO49631.2020.9166063

  9. Bogachkov, I.V., Proc. Conference “Dynamics of Systems, Mechanisms and Machines (Dynamics),” Omsk, 2017, p. 1. https://doi.org/10.1109/Dynamics.2017.8239436

  10. Liu, X., Characterization of Brillouin Scattering Spectrum in LEAF Fiber, Univ. of Ottawa, 2011.

    Google Scholar 

  11. Koyamada, Y., Sato, S., Nakamura, S., Sotobayashi, H., and Chujo, W., J. Lightwave Technol., 2004, vol. 22, p. 631.

    Article  ADS  Google Scholar 

  12. Dragic, P.D., J. Opt. Soc. Am. B, 2009, vol. 26, p. 1614.

    Article  ADS  Google Scholar 

  13. Law, P.-C., Liu, Y.-Sh., Croteau, A., and Dragic, P.D., Opt. Mater. Express, 2011, vol. 1, p. 686.

    Article  ADS  Google Scholar 

  14. Zou, W., He, Z., and Hotate, K., Opt. Express, 2008, vol. 16, p. 18804.

    Article  ADS  Google Scholar 

  15. Sikali Mamdem, Y., Pheron, X., and Taillade, F., Proc. COMSOL Conference, Paris, 2010.

  16. Belokrylov, M.E., Konstantinov, Y.A., Latkin, K.P., Claude, D., Seleznev, D.A., Stepin, A.A., Konin, Y.A, Shcherbakova, V.A., and Kashina, R.R., Instrum. Exp. Tech., 2020, vol. 63, p. 48. https://doi.org/10.1134/S0020441220050012

    Article  Google Scholar 

  17. Kim, Y.H. and Song, K.Y., J. Lightwave Technol., 2015, vol. 33, p. 4922.

    Article  ADS  Google Scholar 

  18. Yu, Q., Bao, X., and Chen, L., Opt. Lett., 2004, vol. 29, p. 17.

    Article  ADS  Google Scholar 

  19. Burdin, V.V., Konstantinov, Y.A., Claude, D., Latkin, K.P., Belokrylov, M.E., Krivosheev, A.I., and Tsibinog-ina, M.K., Instrum. Exp. Tech., 2021, vol. 64, p. 768. https://doi.org/10.1134/S0020441221050031

    Article  Google Scholar 

  20. Burdin, V.V., Konstantinov, Y.A., Pervadchuk, V.P., and Smirnov, A.S., Quantum Electron., 2013, vol. 43, p. 531. https://doi.org/10.1070/QE2013v043n06ABEH014995

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the employees of ZAO Moskabel-Fujikura, AO Optical Fiber Systems (Saransk), and Perm Federal Research Center for their interest in this work, for the OF samples provided for research, and assistance in conducting experiments using a Brillouin optical pulse reflectometer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Bogachkov or N. I. Gorlov.

Additional information

International conference “Optical Reflectometry, Metrology, & Sensing 2023,ˮ Russia, Perm, May 24–26, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachkov, I.V., Gorlov, N.I. Experimental Investigations Into Characteristics of Mandelshtam–Brillouin Scattering in Single-Mode Optical Fiber of Various Types. Instrum Exp Tech 66, 775–781 (2023). https://doi.org/10.1134/S0020441223050068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223050068

Navigation