Skip to main content
Log in

Probe Diagnostics and Identification of Sources of Ionospheric Magnetized Plasma Perturbations

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A procedure for diagnosing magnetized rarefied plasma using an electron saturation current to a cylindrical electric probe has been developed. Approximate formulas and dependences of the electron saturation current on the angle between the probe axis and the induction vector of the external magnetic field, as well as on the scale factors that characterize the collection of the probe current, are obtained. The resulting formulas make it possible to determine the electron density and temperature in the flow of rarefied magnetized plasma using two output signals: the electron saturation current and the probe potential. It is shown that additional parameters, such as the energy balance of electrons in plasma and the strength of the electric field parallel to the induction vector of the Earth’s magnetic field, can be used together with perturbations of the densities and temperatures of electrons and neutral particles in identifying sources of ionospheric plasma disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Whipple, E.S., Rep. Prog. Phys., 1981, vol. 4, no. 11, p. 1197.

    Article  ADS  Google Scholar 

  2. Gubskii, V.F., Soln.-Zemnaya Fiz., 2008, vol. 2, no. 2, p. 261.

    Google Scholar 

  3. Kagan, Yu.M. and Perel’, V.I., Zh. Tekh. Fiz., 1968, vol. 38, no. 10, p. 1663.

    Google Scholar 

  4. Baksht, F.Yu., Dyuzhev, G.A., Tsirkel’, B.I., Shkol’nik, S.M., Yur’ev, V.G., Antonov, S.V., Vainberg, L.I., and Kazanets, G.I., Zh. Tekh. Fiz., 1977, vol. 47, no. 11, p. 2269.

    Google Scholar 

  5. Laframboise, J.S. and Sonmor, L.J., J. Geophys. Res., 1993, vol. 98, no. A1, p. 337.

    Article  ADS  Google Scholar 

  6. Szuszczewicz, E.P. and Takas, P.Z., Phys. Fluids, 1979, vol. 22, no. 12, p. 2424.

    Article  ADS  Google Scholar 

  7. Smirnova, V.V., Geomagn. Aeron., 1966, vol. 6, no. 2, p. 275.

    Google Scholar 

  8. Shuvalov, V.A., Prikl. Mekh. Tekh. Fiz., 1983, no. 6, p. 17.

  9. Granovskii, V.A., Elektricheskii tok v gazakh (Electric Current in Gases), Moscow: Gostekhizdat, 1952, vol. 1.

  10. Mal’kov, M.A., Teplofiz. Vys. Temp., 1991, vol. 29, no. 3, p. 429.

    Google Scholar 

  11. Bohm, D., Burhop, E.H.S., and Massey, H.S.W., in The Characteristics of Electrical Discharge in Magnetic Field, Guthrie, A. and Wakerling, R.K., Eds., New York: McGraw-Hill, 1949, chap. 2, p. 13.

    Google Scholar 

  12. Rubinstein, J. and Laframboise, J.G., Phys. Fluids, 1978, vol. 21, no. 9, p. 1655.

    Article  ADS  Google Scholar 

  13. Langmuir, J. and Blodgett, K., Phys. Rev., 1923, vol. 22, no. 4, p. 374.

    Google Scholar 

  14. Bettinger, R. and Walker, E.H., Phys. Fluids, 1965, vol. 8, no. 4, p. 748.

    Article  ADS  Google Scholar 

  15. Bettinger, R.T. and Chen, A.A., J. Geophys. Res., 1968, vol. 73, no. 7, p. 2513.

    Article  ADS  Google Scholar 

  16. Bettinger, R.T., Interaction of Space Vehicles with an Ionized Atmosphere, Singer, S.F., Ed., London: Pergamon Press, 1965, p. 163.

    Google Scholar 

  17. Shuvalov, V.A., Pis’mennyi, N.I., Lazuchenkov, D.N., and Kochubey, G.S., Instrum. Exp. Tech., 2013, vol. 56, no. 4, p. 459. https://doi.org/10.1134/S002044121304009X

    Article  Google Scholar 

  18. Shuvalov, V.A., Tokmak, N.A., Pismennyi, N.I., and Kochubey, G.S., Instrum. Exp. Tech., 2021, vol. 64, no. 4, p. 570. https://doi.org/10.1134/S0020441221040102

    Article  Google Scholar 

  19. Nosachev, L.V. and Skvortsov, V.V., Zh. Tekh. Fiz., 1978, vol. 48, no. 1, p. 49.

    Google Scholar 

  20. Nosachev, L.V. and Skvortsov, V.V., Zh. Tekh. Fiz., 1978, vol. 48, no. 11, p. 2319.

    Google Scholar 

  21. Miller, N.J., J. Geophys. Res., 1972, vol. 77, no. 16, p. 2851.

    Article  ADS  Google Scholar 

  22. Wrenn, G.L. and Smith, P.A., Proc. IEEE, 1969, vol. 57, no. 6, p. 1085.

    Article  Google Scholar 

  23. Findlay, J.S. and Brace, L.A., Proc. IEEE, 1969, vol. 57, no. 6, p. 1054.

    Article  Google Scholar 

  24. Donley, J.L., Brace, L.N., Findlay, J.A., Hoffman, J.H., and Wrenn, G.L., Proc. IEEE, 1969, vol. 57, no. 6, p. 1078.

    Article  Google Scholar 

  25. Gurevich, A.V. and Shvartsburg, A.B., Nelineinaya teoriya rasprostraneniya radiovoln v ionosfere (Nonlinear Theory for Propagation of Radio-Waves in Ionosphere), Moscow: Nauka, 1973.

  26. Oyama, K.I., J. Astron. Space Sci., 2015, vol. 32, no. 3, p. 167. https://doi.org/10.5140/JASS.2015.33.3.167

    Article  ADS  Google Scholar 

  27. Oyama, K.I., Jee, C.H., Fang, H.K., and Cheng, C.Z., Rev. Sci. Instrum., 2012, vol. 83, no. 5, p. 104. https://doi.org/10.1063/1.4722167

    Article  Google Scholar 

  28. Chiang, C.K., Yeh, T.L., Liu, J.Y., Chao, C.K., Chang, L., Chen, L.W., and Jiang, S.B., Adv. Space Res., 2020, vol. 66, no. 1, p. 135. https://doi.org/10.1016/j.asr.2019.06.007

    Article  ADS  Google Scholar 

  29. Shuvalov, V.A., Lazuchenkov, D.N., Gorev, N.B., and Kochubey, G.S., Adv. Space Res., 2018, no. 61, p. 355. https://doi.org/10.1016/J.asr.2017.08.001

  30. Mitchner, M. and Kruger, C.H., Partially Ionized Gases, New York, London, Toronto: Wiley, 1973.

    Google Scholar 

  31. Braginskii, S.I., Voprosy teorii plazmy (Problems on Theory of Plasma), Leontovich, M.A., Ed., Moscow: Gosatomizdat, 1963, issue 1, p. 183.

  32. Krinberg, I.A., Kinetika elektronov v ionosfere i plazmosfere Zemli (Kinetic of Electrons in the Earth’s Ionosphere and Plasmasphere), Moscow: Nauka, 1978.

  33. Dal’garno, A., Usp. Fiz. Nauk, 1963, vol. 79, no. 1, p. 115; Dalgarno, A., Geophysics, 1961, vol. 17, no. 1, p. 16.

    Google Scholar 

  34. Lebreton, L.P., Stverak, S., Travnicek, T., Maksimovic, M., Klinge, D., Merikallio, S., Lagoutte, S., Poirier, B., Blelly, P.L., Kozacek, Z., and Salaquarda, M., Planet. Space Sci., 2006, vol. 54, p. 472. https://doi.org/10.1016/j.pss.2005.10.017

    Article  ADS  Google Scholar 

  35. Barijatya, A., PhD Thesis, Utah State Univ., 2007. http://digitalCommons.usu.edu/etd/274.

  36. Brunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Physics of Ionosphere), Moscow: Nauka, 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shuvalov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvalov, V.A., Pis’mennyi, N.I., Kochubei, G.S. et al. Probe Diagnostics and Identification of Sources of Ionospheric Magnetized Plasma Perturbations. Instrum Exp Tech 65, 336–350 (2022). https://doi.org/10.1134/S002044122202018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044122202018X

Navigation