Skip to main content
Log in

Determination of plasma density from data on the ion current to cylindrical and planar probes

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 1010–1011 cm–3, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models were used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Oksuz, F. Soberon, and A. R. Ellingboe, J. Appl. Phys. 99, 013304 (2006).

    Article  ADS  Google Scholar 

  2. H. Mott-Smith and I. Langmuir, Phys. Rev. 28, 727 (1926).

    Article  ADS  Google Scholar 

  3. I. B. Bernstein and I. N. Rabinowitz, Phys. Fluids 2, 112 (1959).

    Article  ADS  Google Scholar 

  4. J. G. Laframboise, Report No. 100 (Univ. Toronto Inst. Aerospace Studies, Toronto, 1966).

    Google Scholar 

  5. J. E. Allen, R. L. F. Boyd, and P. Reynolds, Proc. Phys. Soc. London B 70, 297 (1957).

    Article  ADS  Google Scholar 

  6. I. D. Sudit and R. C. Woods, J. Appl. Phys. 76, 4488 (1994).

    Article  ADS  Google Scholar 

  7. D. Voloshin, A. Kovalev, Yu. Mankelevich, O. Proshina, T. Rakhimova, and A. Vasilieva, Eur. Phys. J. D 69, 23 (2015).

    Article  ADS  Google Scholar 

  8. G. Narasimhan and Ch. Steinbruchel, J. Vac. Sci. Technol. A 19, 376 (2001).

    Article  ADS  Google Scholar 

  9. C. R. Giles, R. M. Clements, and P. R. Smy, J. Phys. D 12, 1685 (1979).

    Article  ADS  Google Scholar 

  10. Yu. M. Kagan and V. I. Perel’, Sov. Phys. Usp. 6, 767 (1964).

    Article  ADS  Google Scholar 

  11. A. S. Mustafaev and A. Yu. Grabovskii, High Temp. 50, 785 (2012).

    Article  Google Scholar 

  12. E. Stamate, Plasma Phys. Controlled Fusion 54, 124048 (2012).

    Article  ADS  Google Scholar 

  13. E. Stamate, Surf. Coat. Technol. 260, 401 (2014).

    Article  Google Scholar 

  14. M. Darnon, G. Cunge, and N. St. J. Braithwaite, Plasma Sources Sci. Technol. 23, 025002 (2014).

    Article  ADS  Google Scholar 

  15. D. Lee and N. Hershkowitz, Phys. Plasmas 14, 033507 (2007).

    Article  ADS  Google Scholar 

  16. R. L. Merlino, Am. J. Phys. 75, 1078 (2007).

    Article  ADS  Google Scholar 

  17. Y.-C. Ghim and N. Hershkowitz, Rev. Sci. Instrum. 80, 033502 (2009).

    Article  ADS  Google Scholar 

  18. T. E. Sheridan, J. Phys. D 43, 105204 (2010).

    Article  ADS  Google Scholar 

  19. T. E. Sheridan, Phys. Plasmas 7, 3084 (2000).

    Article  ADS  Google Scholar 

  20. D. Voloshin, T. Rakhimova, and Yu. Mankelevich, Plasma Sources Sci. Technol. 25, 015018 (2016).

    Article  ADS  Google Scholar 

  21. C. M. Horwitz, J. Vac. Sci. Technol. A 1, 1795 (1983).

    Article  ADS  Google Scholar 

  22. V. A. Godyak and R. B. Piejak, J. Vac. Sci. Technol. A 8, 3833 (1990).

    Article  ADS  Google Scholar 

  23. A. V. Phelps, J. Appl. Phys. 76, 747 (1994).

    Article  ADS  Google Scholar 

  24. H. Wang, W. Jiang, and Y. Wang, Plasma Sources Sci. Technol. 19, 045023 (2010).

    Article  ADS  Google Scholar 

  25. A. Cenian, A. Chernukho, A. Bogaerts, R. Gijbels, and C. Leys, J. Appl. Phys. 97, 123310 (2005).

    Article  ADS  Google Scholar 

  26. F. Iza and J. K. Lee, J. Vac. Sci. Technol. A 24, 1366 (2006).

    Article  Google Scholar 

  27. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981).

  28. T. V. Rakhimova, O. V. Braginsky, V. V. Ivanov, A. S. Kovalev, D. V. Lopaev, Yu. A. Mankelevich, M. A. Olevanov, O. V. Proshina, A. T. Rakhimov, A. N. Vasilieva, and D. G. Voloshin, IEEE Trans. Plasma Sci. 35, 1229 (2007).

    Article  ADS  Google Scholar 

  29. F. F. Chen, in Plasma Diagnostic Techniques, Ed. by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965), p. 143.

  30. F. F. Chen, J. D. Evans, and W. Zawalski, Plasma Sources Sci. Technol. 21, 055002 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Voloshin.

Additional information

Original Russian Text © D.G. Voloshin, A.N. Vasil’eva, A.S. Kovalev, Yu.A. Mankelevich, T.V. Rakhimova, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 12, pp. 1099–1108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voloshin, D.G., Vasil’eva, A.N., Kovalev, A.S. et al. Determination of plasma density from data on the ion current to cylindrical and planar probes. Plasma Phys. Rep. 42, 1146–1154 (2016). https://doi.org/10.1134/S1063780X16120096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16120096

Navigation