Skip to main content
Log in

Measurement Method of Nanofluids Average Velocity Based on Laser Speckle Image

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

In this paper, based on the optical properties of speckle, the correlation between laser speckle image and nanoparticles is analyzed, and a method to measure the flow velocity of nanofluids using speckle image is proposed. The influence of nanofluids type, temperature and concentration on speckle image was investigated. On the basis of grating spatial filtering, based on PIV (Particle Image Velocimetry) cross-correlation algorithm and optical flow field algorithm, the principle of gray conservation and interpretation window are introduced to extract the spectral characteristic curve of speckle image signal. Considering the interference of the environment noise, the wavelet packet decomposition method is proposed to separate the low-frequency features and obtain the peak frequency of the signal. The static and dynamic speckle images are analyzed by establishing a circular tube flow measurement system with laser speckle circulation to verify the rationality and feasibility of the velocity measurement method. The experimental results show that the speckle image of CuO nanofluids in static experiment is better than that of Al2O3 nanofluids, and increasing temperature has no obvious effect of improving image quality. The average relative error between the calculated results and the measured results is 4.9 and 4.5%, which proves that this method is reasonable and feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Motevasel, M., Solaimany Nazar, A.R., and Jamialahmadi, M., J. Therm. Anal. Calorim., 2019, vol. 135, p. 133. https://doi.org/10.1007/s10973-018-7314-8

    Article  Google Scholar 

  2. Eastman, J.A., Choi, U.-S., Li, S., Thompson, L.J., and Lee, S., MRS Proc., 1996, vol. 457, p. 3. https://doi.org/10.1557/PROC-457-3

  3. Wang, X. and Xu, X., J. Thermophys. Heat Transfer, 2012, vol. 13, no. 13, p. 474. https://doi.org/10.2514/2.6486

    Article  Google Scholar 

  4. Eastman, J.A., Yu, W., Choi, U.-S., Thompson, L.J., and Li, S., Appl. Phys. Lett., 2001, vol. 78, no. 6, p. 718. https://doi.org/10.1063/1.1341218

    Article  ADS  Google Scholar 

  5. Alimenti, F., Bonafoni, S., Gallo, E., Palazzi, V., Gatti, R.V., Mezzanotte, P., Roselli, L., Zito, D., Barbetta, S., and Corradini, C., IEEE Trans. Geosci. Remote Sens., 2020, vol. 58, no. 7, p. 5195. https://doi.org/10.1109/TGRS.2020.2974185

    Article  ADS  Google Scholar 

  6. Kazuya Nakano, Yuta Aoki, Ryota Satoh, Akira Hoshi, Hiroyuki Suzuki, and Izumi Nishidate, Proc. SPIE 9715, Optical Diagnostics and Sensing XVI: Toward Point-of-Care Diagnostics, San Francisco, CA, 2016, p. 971515. https://doi.org/10.1117/12.2212417

  7. Zhang Jun, Chen Liujun, Xu Qi, Wu Yungang, and Zhang Long, J. Aeronaut. Power, 2017, vol. 32, no. 06, p. 1289. https://doi.org/10.13224/j.cnki.jasp.2017.06.002

    Article  Google Scholar 

  8. Soares, R.R., Barbosa, H.C., Braga, R.A., Botega, J.V.L., and Horgan, G.W., Flow Meas. Instrum., 2013, vol. 30, p. 90. https://doi.org/10.1016/j.flowmeasinst.2013.01.008

    Article  Google Scholar 

  9. Masayasu Shimura and Mamoru Tanahashi, J. Combust. Soc. Jpn., 2019, vol. 61, no. 197, p. 231. https://doi.org/10.20619/jcombsj.61.197_231

    Article  Google Scholar 

  10. Han, L., Wang, H., Liu, X., Xie, R., and Fu, C., Sensors, 2019, vol. 19, no. 12, p. 2702. https://doi.org/10.3390/s19122702

    Article  ADS  Google Scholar 

  11. Adrian, R.J., Exp. Fluids, 2005, vol. 39, no. 2, p. 159. https://doi.org/10.1007/s00348-005-0991-7

    Article  Google Scholar 

  12. Park, J.H., Choi, W., and Sang, J.L., Ultrasonics, 2020, vol. 104, p. 106093. https://doi.org/10.1016/j.ultras.2020.106093

    Article  Google Scholar 

  13. Contado, E., Júnior, R.A.B., Barbosa, H.C., Reis, R.O., and Prabhu, R., Theor. Appl. Eng., 2020, vol. 5, p. 1. https://doi.org/10.31422/taae.v4i4.33

    Article  Google Scholar 

  14. Adrian, R.J. and Lyilo, C.S., Appl. Opt., 1985, vol. 24, p. 44. https://doi.org/10.1364/AO.24.000044

    Article  ADS  Google Scholar 

  15. Peisen, L., Basis of Speckle Statistical Optics, Science Press, 1987, pp. 5−56, pp. 91−103.

    Google Scholar 

  16. Ming Qian, Xiao Wu Ni, Jian Lu, and Zhong Hua Shen, Key Eng. Mater., 2008, vol. 86, p. 1111. https://doi.org/10.4028/www.scientific.net/KEM.364-366. 1111

  17. Gong, J.M., Yang, H., Lin, S.H., Li, R., and Zivkovic, V., Powder Technol., 2018, vol. 324, no. 15, p. 76. https://doi.org/10.1016/j.powtec.2017.10.041

    Article  Google Scholar 

  18. Zhang, D. and Liu, R., Int. J. Opt., 2019, vol. 2019. no. 9, p. 1. https://doi.org/10.1155/2019/1097292

    Article  Google Scholar 

  19. Sun, K., Zhang, J., Shi, W., and Guo, J., Energies, 2019, vol. 12, no. 17, p. 3242. https://doi.org/10.3390/en12173242

    Article  Google Scholar 

  20. Bettayeb, F., Haciane, S., and Aoudia, S., NDT&E Int., 2005, vol. 38, no. 6, p. 478. https://doi.org/10.1016/j.ndteint.2004.12.003

    Article  Google Scholar 

  21. Feng Zhen and Ma Qishuang, Laser Infrared, 2010, vol. 40, no. 3, p. 315, https://doi.org/10.3724/SP.J.1087.2010.02819

    Article  Google Scholar 

  22. Kan, Z., Shao, F., and Li, Q., Chin. J. Sens. Actuators, 2012, vol. 25, no. 5, p. 609. https://doi.org/10.3969/j.issn.1004-1699.2012.05.011

    Article  Google Scholar 

  23. Gao, H., Fan, B., and Chang, Q., Rev. Sci. Instrum., 2019, vol. 90, no. 7, p. 075002. https://doi.org/10.1063/1.5100184

    Article  ADS  Google Scholar 

  24. Xu, C., Zhou, B., Yang, D., Tang, G., and Wang, S., Meas. Sci. Technol., 2008, vol. 19, no. 2, p. 211. https://doi.org/10.1088/0957-0233/19/2/024005

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China under Contract (nos. 51966005, 52069010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Qing or Zhumei Luo.

Ethics declarations

The authors of this work declare that there are no conflicts of interest regarding the publication of this paper.

SUPPLEMENTARY MATERIALS WAVELET PACKET TRANSFORM DETAILS

SUPPLEMENTARY MATERIALS WAVELET PACKET TRANSFORM DETAILS

Firstly, the coefficients of orthogonal low-pass filter and high pass filter are defined as ls and hs, respectively, and the following conditions must be met:

$$\begin{gathered} \sum {{l}_{{s - 2}}}{{l}_{{s - 2k}}} = {{\delta }_{{j,k}}},\quad \sum {{l}_{s}} = \sqrt 2 , \\ {{h}_{k}} = {{( - 1)}^{k}}{{h}_{{1 - k}}}. \\ \end{gathered} $$
(1)

If the sequence of wavelet packets is defined as: \(\{ {{T}_{s}}(t){\text{|}}s \in {{N}_{1}}\} \), then there are:

$$\left\{ \begin{gathered} {{T}_{{2s}}}(t) = \sqrt 2 \sum {{l}_{k}}{{T}_{s}}(2t - k), \hfill \\ {{T}_{{2s + 1}}}(t) = \sqrt 2 \sum {{h}_{k}}{{T}_{s}}(2t - k). \hfill \\ \end{gathered} \right.$$
(2)

The scaling function of wavelet packet function is:

$${{T}_{0}}(t) = {{F}^{{ - 1}}}\left[ {\prod {{H}_{0}}\left( {\frac{\omega }{{{{2}^{j}}}}} \right)} \right].$$
(3)

Where the frequency response of ls is H0(w), as follows:

$${{H}_{0}}({{\omega }}) = \frac{1}{{\sqrt 2 }}\mathop \sum \limits_k {{l}_{k}}{{e}^{{ - jk{{\omega }}}}}.$$
(4)

Then, from formula (2), we can get:

$$\begin{gathered} {{T}_{s}}(t - k) = \frac{1}{{\sqrt 2 }}\sum\limits_i {{{l}_{{k - 2i}}}} {{T}_{{2s}}}\left( {\frac{t}{2} - i} \right) \\ + \,\,\frac{1}{{\sqrt 2 }}\sum\limits_i {{{h}_{{k - 2i}}}} {{T}_{{2s + 1}}}\left( {\frac{t}{2} - i} \right). \\ \end{gathered} $$
(5)

It can be seen from the above formula that on the left side of the formula, it constitutes a set of normal orthogonal bases of L2(R).

The continuous time signal of discrete sampling signal is given as follows:

$$f(t) = \sum\limits_k^{} {{{e}_{{0,0,k}}}{{T}_{0}}(t - k)} $$
(6)

where e0.0,k represents the k-th component of the discrete sampling signal. Formula (6) is similar to Shannon’s theorem. Then from formula (5), we can get:

$${{T}_{0}}(t\, - \,k)\, = \,\frac{1}{{\sqrt 2 }}\sum\limits_t^{} {{{l}_{{k - 2i}}}{{T}_{0}}\left( {\frac{t}{2}\, - \,i} \right)\, + \,\frac{1}{{\sqrt 2 }}\sum\limits_t^{} {{{h}_{{k - 2i}}}{{T}_{t}}\left( {\frac{t}{2}\, - \,i} \right).} } $$
(7)

Formula (7) is combined with formula (6), and the dissolving formula (6) is as follows:

$$\begin{gathered} f(t) = \sum\limits_k^{} {{{e}_{{0,0,k}}}\left[ {\left. {\frac{1}{{\sqrt 2 }}} \right)\sum\limits_i^{} {{{l}_{{k - 2i}}}{{T}_{0}}\left( {\frac{t}{2} - i} \right)} } \right.} \\ \left. { + \frac{1}{{\sqrt 2 }}\sum\limits_i^{} {{{h}_{{k - 2i}}}{{T}_{1}}\left( {\frac{t}{2} - i} \right)} } \right] \\ \end{gathered} $$
$$\begin{gathered} = \sum\limits_i^{} {\frac{1}{{\sqrt 2 }}\left( {\sum\limits_k^{} {{{e}_{{0,0,k}}}{{l}_{{k - 2i}}}} } \right){{T}_{0}}\left( {\frac{t}{2} - i} \right)} \\ + \,\sum\limits_i^{} {\frac{1}{{\sqrt 2 }}\left( {\sum\limits_k^{} {{{e}_{{0,0,k}}}{{l}_{{k - 2i}}}} } \right){{T}_{0}}\left( {\frac{t}{2} - i} \right)} . \\ \end{gathered} $$
(8)

In the above formula, let e1,0,k be:

$${{e}_{{1,0,k}}} = \sum\limits_g^t {{{e}_{{0,0,g}}}{{l}_{{g - 2k}}},\quad {{e}_{{1,1,k}}} = \sum\limits_g^{} {{{e}_{{0,0,g}}}{{h}_{{g - 2k}}}} } $$
(9)

The formula (9) is further substituted into (8) to simplify:

$$f(t) = \sum\limits_k^{} {\frac{1}{{\sqrt 2 }}{{e}_{{1,0,k}}}{{T}_{0}}\left( {\frac{t}{2} - k} \right) + \sum\limits_k^{} {\frac{1}{{\sqrt 2 }}{{e}_{{1,1,k}}}\left( {\frac{t}{2} - k} \right)} } $$
(10)

Substitute the following formula into formula (8):

$${{T}_{0}}\left( {\frac{t}{2} - i} \right),\quad {{T}_{1}}\left( {\frac{t}{2} - i} \right).$$
(11)

There are:

$$f(t) = \sum\limits_{s = 0}^{{{2}^{J}} - 1} {\sum\limits_{k \in Z} {{{w}_{{J,s,k}}}} } {{2}^{{ - J/2}}}{{T}_{s}}({{2}^{{ - J}}} - k);$$
(12)
$$\left\{ \begin{gathered} {{w}_{{j,2s,k}}} = \mathop \sum \limits_m {{w}_{{j - 1,s,g}}}{{l}_{{g - 2k}}}, \hfill \\ {{w}_{{j,2s + 1,k}}} = \mathop \sum \limits_m {{w}_{{j - 1,s,g}}}{{h}_{{g - 2k}}}. \hfill \\ \end{gathered} \right.$$
(13)

The above algorithm is called tower algorithm, in which \(j,s\) can be expressed as the following formula:

$$\begin{gathered} j = 1,2,3, \ldots ,J, \\ s = 0,1, \ldots {{,2}^{j}} - 1. \\ \end{gathered} $$
(14)

Then, the corresponding formula is as follows:

$${{{\mathbf{w}}}_{{j - 1,s,k}}} = \sum\limits_g {{{l}_{{k - 2g}}}} {{{\mathbf{w}}}_{{j,2s,g}}} + \sum\limits_s {{{h}_{{k - 2g}}}} {{{\mathbf{w}}}_{{j,2s + 1.g}}}.$$
(15)

From the above deduction, we can see that formula (13) is the wavelet packet decomposition algorithm, and formula (15) is the wavelet packet recovery method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Liang, M., Qing, S. et al. Measurement Method of Nanofluids Average Velocity Based on Laser Speckle Image. Instrum Exp Tech 65, 162–174 (2022). https://doi.org/10.1134/S0020441222010055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222010055

Navigation