Skip to main content
Log in

A Programmable Pulse Sequence Generator for High Temperature Low-Field NMR Apparatus

  • Electronics and Radio Engineering
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The stable operation of pulse sequence generators at high temperatures (200°C) has been an important issue for some time in the application of nuclear magnetic resonance (NMR) apparatus for oil exploration. The application of system-in-package (SiP) technology was used to improve the temperature-resist grade of the hardware platform. A pulse sequence generator that meets the requirements of accurate phase and adjustable frequency during NMR apparatus in high temperature environments was designed and implemented. At ambient temperatures of up to 200°C, experimental results show that the delay times of the rising and falling edges of the pulse are 3.2 and 3.35 ns. respectively. The eye diagram Q factor of the critical path is not less than 15, and the Bit Error Rate (BER) is not more than 10–50. The experimental results show that a pulse sequence generator can meet the requirements of high temperature NMR apparatus, and can also provide a template for the design of an NMR pulse sequence generator for special fields of application, such as deep sea surveys and aviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluker, N.L., Suzdaltseva, J.M., Herrmann, M., and Dulepova, A.C., Instrum. Exp. Tech., 2016, vol. 59, no. 5, p. 733. doi 10.1134/S002044121605002X

    Article  Google Scholar 

  2. Huang, J., Tu, X., and He, J., IEEE Trans. Syst., Man, Cybern.: Syst., 2016, vol. 46, no. 7, p. 926. doi 10.1109/TSMC.2015.2497205

    Article  Google Scholar 

  3. Kolpakov, V.A., Krichevsky, S.V., and Podlipnov, V.V., Instrum. Exp. Tech., 2017, vol. 60, no. 2, p. 297. doi 10.1134/S0020441217020087

    Article  Google Scholar 

  4. Huang, J., Yu, X., Wang, Y., and Xiao, X., Sensors. 2016, vol. 16, no. 11, p. 1825. doi 10.3390/s16111825

    Article  Google Scholar 

  5. Andronov, A.O., Matyushkin, L.B., Khondryukov, D.V., Aleksandrova, A.O., and Moshnikov, V.A., Instrum. Exp. Tech., 2017, vol. 60, no. 6, p. 888. doi 10.1134/S0020441217050141

    Article  Google Scholar 

  6. Di, P., Hasegawa, Y., Nakagawa, S., Sekiyama, K., Fukuda, T., Huang, J., and Huang, Q., IEEE/ASME Trans. Mechatronics. 2016, vol. 21, no. 2, p. 625. doi 10.1109/TMECH.2015.2477996

    Article  Google Scholar 

  7. Nakagawa, S., Hasegawa, Y., Fukuda, T., Kondo, I., Tanimoto, M., Di, P., Huang, J., and Huang, Q., IEEE Trans. Neural Syst. Rehabil. Eng., 2016, vol. 24, no. 5, p. 542. doi 10.1109/TNSRE.2015.2429315

    Article  Google Scholar 

  8. Huang, J., Guan, Z.-H., Matsuno, T., Fukuda, T., and Sekiyama, K., IEEE Trans. Rob., 2010, vol. 26, no. 4, p. 750. doi 10.1109/TRO.2010.2053732

    Article  Google Scholar 

  9. Rocha, C.M., Carrola, J., Barros, A.S., Gil, A.M., Goodfellow, B.J., and Carreira, I.M., J. Proteome Res., 2011, vol. 10, no. 9, p. 4314. doi 10.1021/pr200550p

    Article  Google Scholar 

  10. Skalicky, J.J., Mills, J.L., and Surabhi Sharma, A., J. Am. Chem. Soc., 2015, vol. 123, p. 388. doi 10.1021/ja003220l

    Article  Google Scholar 

  11. Bonhomme, C., Gervais, C., and Laurencin, D., Prog. Nucl. Magn. Reson. Spectrosc., 2014, vol. 77, no. 2, p. 1. doi 10.1016/j.pnmrs.2013.10.001

    Article  Google Scholar 

  12. Knight, R., Walsh, D.O., Butler, J.J., Jr., Grunewald, E., Liu, G., and Parsekian, A.D., Ground Water. 2015, vol. 54, no. 1, p. 104. doi 10.1111/gwat.12324

    Article  Google Scholar 

  13. Avant, C., Daungkaew, S., Behera, B.K., Danpanich, S., Laprabang, W., and Santo, I.D., Oilfield Rev., 2012, vol. 24, no. 3, p. 4.

    Google Scholar 

  14. Dziedzic, A. and Nowak, D., Radioengineering. 2013, vol. 22, no. 1, p. 218.

    Google Scholar 

  15. Johnson, R.W., Evans, J.L., Jacobsen, P., and Thompson, J.R., IEEE Trans. Electron. Packag. Manuf., 2004, vol. 27, no. 3, p. 164. doi 10.1109/TEPM.2004.843109

    Article  Google Scholar 

  16. Casabianca, L.B., Mohr, D., Mandal, S., Song, Y.Q., and Frydman, L., J. Magn. Reson., 2014, vol. 242, no. 5, p. 197. doi 10.1016/j.jmr.2014.02.025

    Article  ADS  Google Scholar 

  17. Le, B.G., Raoof, K., and Yonnet, J.P., Conf. Proc. IEEE Eng. Med. Biol. Soc., 2006, p. 1901. doi 10.1109/IEMBS.2006.260454

    Google Scholar 

  18. Beard, D., Itskovich, G., Reiderman, A., and Chen, S., US Patent 6597170B1, 2003. https://doi.org/www.google.com/patents/US6597170.

    Google Scholar 

  19. Coates, G.R., Xiao, L.Z., and Prammer, M.G., NMR Logging Principles and Applications, Houston, TX: Halliburton Energy Services, 2000. doi 10.1002/cmr.1029

    Google Scholar 

  20. Trevizan, W., Netto, P., Coutinho, B., Machado, V.F., Rios, E.H., and Chen, S., Petrophysics. 2014, vol. 55, no. 3, p. 240.

    Google Scholar 

  21. Ronczka, M. and Müllerpetke, M., Geosci. Instrum., Methods Data Syst., 2012, vol. 1, no. 2, p. 197. doi 10.5194/gi-1-197-2012

    Article  ADS  Google Scholar 

  22. Wu, J. and Cheng, X., Int. J. Heat Mass Transfer, 2013, vol. 58, p. 374. doi 10.1016/j.ijheatmasstransfer.2012.11.046

    Article  Google Scholar 

  23. Heaton, N.J., US Patent 6522138, 2003. https://doi.org/www.google.com/patents/US6522138.

    Google Scholar 

  24. Ren, Z., Gao, L., and Chang, B., Proc. International Conference on Intelligent Computation Technology and Automation(ICICTA), Changsha, 2010, vol. 2, p. 289. doi 10.1109/ICICTA.2010.659

    Google Scholar 

  25. Jargon, J.A., Wang, C.M., and Hale, P.D., J. Lightwave Technol., 2008, vol. 26, p. 3592.

    Article  ADS  Google Scholar 

  26. Holzlohner, R., Grigoryan, V.S., and Menyuk, C.R., J. Lightwave Technol., 2002, vol. 20, p. 389. doi 10.1109/50.988987

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Cheng.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Fan, Y., Cheng, J. et al. A Programmable Pulse Sequence Generator for High Temperature Low-Field NMR Apparatus. Instrum Exp Tech 61, 506–515 (2018). https://doi.org/10.1134/S0020441218040127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441218040127

Navigation