Skip to main content
Log in

A plasma generator based on nonself-sustained low-pressure glow discharge with a large-volume hollow cathode

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of studying nonself-sustained glow discharges in an electrode system with a hollow cathode with a volume of 0.25 m3 are presented. A high-current (up to 35 A) nonself-sustained glow discharge at low pressures (0.3–1.0 Pa) is initiated and sustained with the help of an auxiliary cold-hollow-cathode arc discharge. When the current of a nonself-sustained glow discharge increases from 2 to 35 A, its burning voltage changes from 40 to 300 V. These values are much lower than the voltage for a self-sustained glow discharge in the same electrode system. At a discharge current of 30 A, the electron concentration at the center of the hollow cathode is n e ∼ 1010–1011 cm−3 and the electron temperature is T e ≈ 2 eV. The discharge considered can be used in the system for modification of materials and products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakhtin, Yu.M., Kogan, Ya.D., Shpis, G.I., and Bemer, Z., Teoriya i tekhnologiya azotirovaniya (Theory and Technology of Nitriding), Moscow: Metallurgiya, 1991.

    Google Scholar 

  2. Bell, T., Surface Engineering, 2002, vol. 18, no. 6, p. 415.

    Article  Google Scholar 

  3. Akhmadeev, Yu.Kh., Goncharenko, I.M., Ivanov, Yu.F., et al., Pis’ma Zh. Tekh. Fiz., 2005, vol. 31, no. 13, p. 24 [Tech. Phys. Lett. (Engl. Transl.), vol. 31, no. 13].

    Google Scholar 

  4. Barchenko, V.T. and Lisenkov, A.A., Peterburg. Zh. Elektron., 2008, nos. 2–3, p. 58.

  5. Shchanin, P.M., Koval’, N.N., Goncharenko, I.M., and Grigor’ev, S.V., Fiz. Khim. Obrab. Mater., 2001, no. 3, p. 16.

  6. Andreev, A.A., Kunchenko, V.V., Sablev, L.P., et al., Tekhnol. Mashinostr., 2002, no. 5, p. 27.

  7. Meletis, E.I., Surf. Coat. Technol., 2002, no. 149, p. 95.

  8. Metel, A.S., Grigorev, S.N., Melnik, Yu.A., and Panin, V.V., Fiz. Plazmy, 2009, vol. 35, no. 12, p. 1140 [Plasma Phys. Rep. (Engl. Transl.), vol. 35, no. 12, p. 1058].

    Google Scholar 

  9. Vizir’, A.V., Oks, E.M., Shchanin, P.M., and Yushkov, G.Yu., Zh. Tekh. Fiz., 1997, vol. 67, no. 6, p. 27.

    Google Scholar 

  10. Gavrilov, N.V., Emlin, D.R., and Kamenetskikh, A.S., Izv. Vyssh. Uchebn. Zaved., Fiz., 2007, no. 9, p. 30.

  11. Gavrilov, N.V., Mamaev, A.S., and Kaigorodov, A.S., Pis’ma Zh. Tekh. Fiz., 2009, vol. 35, no. 1, p. 69 [Tech. Phys. Lett. (Engl. Transl.), vol. 35, no. 1, p. 33].

    Google Scholar 

  12. RF Patent No. 2227962, Byull. Izobret., 2002, no. 12.

  13. Ul’yanov, K.N., Teplofiz. Vys. Temp., 1999, vol. 37, no. 3, p. 363 [High Temp. (Engl. Transl.), vol. 37, no. 3, p. 337].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Lopatin.

Additional information

Original Russian Text © I.V. Lopatin, Yu.Kh. Akhmadeev, N.N. Koval’, P.M. Shchanin, 2011, published in Pribory i Tekhnika Eksperimenta, 2011, No. 1, pp. 151–156.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopatin, I.V., Akhmadeev, Y.K., Koval’, N.N. et al. A plasma generator based on nonself-sustained low-pressure glow discharge with a large-volume hollow cathode. Instrum Exp Tech 54, 141–146 (2011). https://doi.org/10.1134/S0020441211010179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441211010179

Keywords

Navigation