Skip to main content
Log in

Studying the effect of adsorbed molecules on the operation of a diode with an explosive-emission cathode

  • General Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of an experimental study of the effect of an adsorbed gas and surface contaminations of an explosive-emission cathode on the operation of a diode during generation of a high-current electron beam of nanosecond duration are presented. The effect of contaminations was revealed from the change in the rate of expansion of the planar-diode cathode plasma for cathodes of different designs manufactured from different materials and different initial anode-cathode gaps. The plasma velocity was calculated from the experimental perveance of the diode with a resolution of 0.2 ns. Experiments were performed on a ТЭУ-500 pulsed electron accelerator (350–450 kV, 100 ns, and 250 J/pulse) in a mode of matching the diode impedance to the output impedance of the nanosecond generator. It has been found that the velocity of cathode plasma is constant for 70–90 ns after applying voltages to different cathodes at different anode-cathode gaps. The velocities were 2.0 ± 0.5 cm/ μs for carbon cathodes (of different diameters), 3 ± 0.5 cm/μs for multispike tungsten cathodes, and 4.0 ± 0.5 cm/μs for copper (solid or multispike) cathodes. An appreciable dependence of the plasma velocity on the cathode material shows an insignificant influence of the adsorbed gas and cathode surface contaminations on the expansion velocity of the explosive-emission plasma in a planar diode during generation of the electron beam (10–15 ns after a voltage is applied).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mesyats, G.A., Impul’snaya energetika i elektronika (Pulsed Power and Electronics), Moscow: Nauka, 2004.

    Google Scholar 

  2. Kotov, Yu.A., Sokovnin, S.Yu., and Balezin, M.E., Zh. Tekh. Fiz., 2003, vol. 73, no. 4, p. 124 [Tech. Phys. (Engl. Transl.), vol. 48, no. 4, p. 503].

    Google Scholar 

  3. Krasik, Ya.E., Dunaevsky, A., Gleizer, J.Z., et al., J. Appl. Phys., 2002, vol. 91, no. 11, p. 9385.

    Article  ADS  Google Scholar 

  4. Abdulin, E.N., Bugaev, S.P., Efremov, A.M., et al., Prib. Tekh. Eksp., 1993, no. 5, p. 138.

  5. Remnev, G.E., Furman, E.G., Pushkarev, A.I., et al., Prib. Tekh. Eksp., 2004, no. 3, p. 130.

  6. Remnev, G.E., Pushkarev, A.I., and Furman, E.G., Pis’ma Zh. Tekh. Fiz., 2004, vol. 30, no. 14, p. 63 [Tech. Phys. Lett. (Engl. Transl.), vol. 30, no. 14].

    Google Scholar 

  7. Pushkarev, A.I. and Sazonov, R.V., Prib. Tekh. Eksp., 2007, no. 5, p. 117 [Instr. Exp. Techn. (Engl. Transl.), vol. 50, no. 5, p. 687].

  8. Korolev, Yu.D. and Mesyats, G.A., Avtoemissionnye i vzryvnye protsessy v gazovom razryade (Field-Emission and Explosive Process in Gas Discharge), Novosibirsk: Nauka, 1982.

    Google Scholar 

  9. Karlik, K.V., Ozur, G.E., and Proskurovskii, D.I., Izv. Vyssh. Uchebn. Zaved., Fiz., 2007, no. 9 (Supplement), p. 114.

  10. Pushkarev, A.I., Zh. Tekh. Fiz., 2008, vol. 78, no. 3, p. 78 [Tech. Phys. (Engl. Transl.), vol. 53, no. 3, p. 357].

    Google Scholar 

  11. Erickson, G.F. and Mace, P.N., Rev. Sci. Instrum., 1983, vol. 54, no. 5, p. 586.

    Article  ADS  Google Scholar 

  12. Mesyats, G.A., Ektony v vakuumnom razryade: proboi, iskra, duga (Ectons in Vacuum Discharge: Breakdown, Spark, Arc), Moscow: Nauka, 2000.

    Google Scholar 

  13. Pushkarev, A.I. and Sazonov, R.V., Pis’ma Zh. Tekh. Fiz., 2008, vol. 34, no. 7, p. 44 [Tech. Phys. Lett. (Engl. Transl.), vol. 34, no. 7, p. 292].

    Google Scholar 

  14. Mesyats, G.A. and Proskurovskii, D.I., Impulsnyi razryad v vakuume (Pulse Discharge in Vacuum), Novosibirsk: Nauka, 1984.

    Google Scholar 

  15. Shubin, A.F. and Yurike, Ya.Ya., Izv. Vyssh. Uchebn. Zaved., Fiz., 1975, vol. 157, no. 6, p. 134.

    Google Scholar 

  16. Bazhenov, G.P., Ladyzhenskii, O.B., Litvinov, E.A., and Chesnokov, S.M., Zh. Tekh. Fiz., 1977, vol. 47, no. 10, p. 2086 [Sov. Phys. Tech. Phys. (Engl. Transl.), vol. 22, no. 10, p. 1212].

    Google Scholar 

  17. Parker, R.K., Anderson, R.E., and Duncan, C.V., J. Appl. Phys., 1974, vol. 45, p. 2463.

    Article  ADS  Google Scholar 

  18. Lebedev, A.N., Fizicheskie protsessy v sil’notochnykh diodakh: Uchebnoe posobie (Physical Processes of High-Current Diodes), Moscow: MIFI, 1984.

    Google Scholar 

  19. Abdullin, E.N. and Bazhenov, G.P., Izv. Vyssh. Uchebn. Zaved., Fiz., 1984, no. 11.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Pushkarev, R.V. Sazonov, 2008, published in Pribory i Tekhnika Eksperimenta, 2008, No. 6, pp. 103–113.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pushkarev, A.I., Sazonov, R.V. Studying the effect of adsorbed molecules on the operation of a diode with an explosive-emission cathode. Instrum Exp Tech 51, 875–885 (2008). https://doi.org/10.1134/S0020441208060183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441208060183

PACS numbers

Navigation