Skip to main content
Log in

Vacuum Arcs with Diffuse Cathode Attachment (Review)

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The review covers the results of predominantly experimental studies of stationary vacuum arcs with diffuse cathode attachment that burns in vapor of the cathode material with a current density of less than 100 A/cm2. Such discharges are of great interest for a number of technologies that require the formation of high-intensity plasma flows without a droplet fraction. The discharges on cathodes made of graphite, pure metals, and oxides, as well as mixed cathodes, are considered. The specificity of the processes on vacuum arc cathodes is characterized by the ratio of the fluxes of thermally vaporized atoms and thermionic electrons. The review presents the results of studies of cathode materials with an atom-electron ratio of ~10–2 to ~108. Data on the working cathode temperature, the current–voltage characteristic of the discharge, the heat flux from the plasma to the cathode, the plasma parameters, its radiation spectrum, and the ion energy in the cathode jet are presented. Depending on the cathode material, the working temperature ranged from 1.2 to 2.5 kK. An analysis of the features of the charge-transfer processes on various cathodes is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. Boxman, R.L., IEEE Trans. Plasma Sci., 2001, vol. 29, p. 762.

    Article  ADS  Google Scholar 

  2. Brown, I.G., Surf. Coat. Technol., 2001, vol. 136, p. 16.

    Article  Google Scholar 

  3. Gushenets, V., Bugaev, A., and Oks, E., Rev. Sci. Instrum., 2019, vol. 90, 113309.

    Article  ADS  Google Scholar 

  4. Akan, T., Demirkol, S., Ekem, N., Pat, S., and Musa, G., Plasma Sci. Technol., 2007, vol. 9, p. 280.

    Article  ADS  Google Scholar 

  5. Boxman, R.L. and Goldsmith, S., IEEE Trans. Plasma Sci., 1989, vol. 17, p. 705.

    Article  ADS  Google Scholar 

  6. Ryabchikov, A.I., Ryabchikov, I.A., Stepanov, I.B., and Dektyarev, S.V., Rev. Sci. Instrum., 2006, vol. 77, 03B516.

  7. Şenay, V., Özen, S., Pat, S., and Korkmaz, Ş., J. Alloys Compd., 2017, vol. 720, p. 383.

    Article  Google Scholar 

  8. Kolpakov, A.Y., Kovaleva, M.G., Beresnev, V.M., Manokhin, S.S., Poplavsky, A.I., Khmara, A.N., Mishunin, M.V., Galkina, M.E., Gerus, J.V., Yapryntsev, M.N., Sirota, V.V., and Gluchov, V., J. Nano-Electron.Phys., 2019, vol. 11, 040191.

    Google Scholar 

  9. Hirshfield, J.L., Levin, L.A., and Danziger, O., IEEE Trans. Plasma Sci., 1989, vol. 17, p. 695.

    Article  ADS  Google Scholar 

  10. Paperny, V.L., Krasov, V.I., Lebedev, N.V., Astrakchantsev, N.V., and Chernikch, A.A., Plasma Sources Sci. Technol., 2014, vol. 24, 015009.

    Article  ADS  Google Scholar 

  11. Amirov, R.K., Vorona, N.A., Gavrikov, A.V., Liziakin, G.D., Polistchook, V.P., Samoylov, I.S., Smirnov, V.P., Usmanov, R.A., and Yartsev, I.M., Phys. At. Nucl., 2015, vol. 78, p. 1631.

    Article  Google Scholar 

  12. Kesaev, I.G., Katodnye protsessy elektricheskoi dugi (Cathode Processes of an Electric Arc), Moscow: Nauka, 1968.

  13. Vacuum Arcs: Theory and Application, Lafferty, J.M., Ed., New York: Wiley, 1980.

    Google Scholar 

  14. Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications, Boxman, R.L., Sanders, D.M., and Martin, P.J., Park Ridge, NJ: Noyes, 1995.

  15. Anders, A., Cathodic Arcs: From Fractal Spots to Energetic Condensation, New York: Springer, 2008.

    Book  Google Scholar 

  16. Prozorov, E.F., Ul’yanov, K.N., and Fedorov, V.A., High Temp., 2009, vol. 47, no. 2, p. 158.

    Article  Google Scholar 

  17. Prozorov, E.F., Ul’yanov, K.N., and Fedorov, V.A., High Temp., 2013, vol. 51, no. 2, p. 179.

    Article  Google Scholar 

  18. Liu, H., Li, L., Gu, J., Wang, Q., Huang, K., and Xu, Y., Int. J. Adv. Des. Manuf. Technol., 2017, vol. 96, p. 1779.

    Article  Google Scholar 

  19. Anders, S. and Anders, A., IEEE Trans. Plasma Sci., 1991, vol. 19, p. 20.

    Article  ADS  Google Scholar 

  20. Mesyats, G.A., IEEE Trans. Plasma Sci., 2013, vol. 41, p. 676.

    Article  ADS  Google Scholar 

  21. Aksenov, I.I., Strel’nitskij, V.E., Vasilyev, V.V., and Zaleskij, D.Y., Surf. Coat. Technol., 2003, vol. 1, p. 118.

    Article  Google Scholar 

  22. Vasin, A.I., Dorodnov, A.M., and Petrosov, V.A., Pis’ma Zh. Tekh. Fiz., 1979, vol. 5, no. 29, p. 1499.

    Google Scholar 

  23. Korshunov, O.V., Chinnov, V.F., and Kavyrshin, D.I., High Temp., 2019, vol. 57, no. 2, p. 308.

    Article  Google Scholar 

  24. Richter, P., Peter, S., Filippov, V.B., Flemming, G., and Kuhn, M., IEEE Trans. Plasma Sci., 1999, vol. 27, p. 1079.

    Article  ADS  Google Scholar 

  25. Kajioka, H., Higuchi, K., and Nakasone, M., Thin Solid Films, 1995, vol. 256, p. 124.

    Article  ADS  Google Scholar 

  26. Usmanov, R.A., Amirov, R.K., Gavrikov, A.V., Liziakin, G.D., Polistchook, V.P., Samoylov, I.S., Smirnov, V.P., Vorona, N.A., and Yartsev, I.M., Phys. Plasmas, 2018, vol. 25, 063524.

    Article  ADS  Google Scholar 

  27. Veerasamy, V.S., Amaratunga, G.A., Weiler, M., Park, J.S., and Milne, W.I., Surf. Coat. Technol., 1994, vol. 68/69, p. 301.

    Article  Google Scholar 

  28. Paranin, S.N., Polishchuk, V.P., Sychev, P.E., Shabashov, V.I., and Yartsev, I.M., Teplofiz.Vys. Temp., 1986, vol. 24, no. 3, p. 422.

    Google Scholar 

  29. Polishchuk, V.P., Sychev, P.E., Shabashov, V.I., and Yartsev, I.M., Zh. Tekh. Fiz., 1986, vol. 56, p. 2233.

    Google Scholar 

  30. Bronin, S.Ya., Polishchuk, V.P., Sychev, P.E., Shabashov, V.I., and Yartsev, I.M., Study of cathode processes in a stationary arc with diffuse cathode binding, Preprint of Inst. for High Temperatures, Acad. Sci. USSR, Moscow, 1986, no. 2-199.

  31. Dolgolenko, D.A. and Muromkin, Y.A., Phys.—Usp., 2017, vol. 60, p. 994.

    Article  ADS  Google Scholar 

  32. Zweben, S.J., Gueroult, R., and Fisch, N.J., Phys. Plasmas, 2018, vol. 25, 090901.

    Article  ADS  Google Scholar 

  33. Smirnov, V.P., Samokhin, A.A., Vorona, N.A., and Gavrikov, A.V., Plasma Phys. Rep., 2013, vol. 39, p. 456.

    Article  ADS  Google Scholar 

  34. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Dolgoprudnyi: Intellekt, 2009.

  35. Zhukov, M.F., Kozlov, N.P., Pustogarov, A.V., An’shakov, A.S., Khvesyuk, V.I., Dyuzhev, G.A., and Dandaron, G.N., Prielektrodnye protsessy v dugovykh razryadakh (Near-Electrode Processes in Arc Discharges), Novosibirsk: Inst. Teplofiz, 1982.

  36. Fizicheskie velichiny. Spravochnik (Physical Quantities: Reference Book), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

  37. Daalder, J.E., J. Phys. D: Appl. Phys., 1977, vol. 10, p. 2225.

    Article  ADS  Google Scholar 

  38. Nesmeyanov, A.N., Davlenie para khimicheskikh elementov (Vapor Pressure of Chemical Elements), Moscow: Akad. Nauk SSSR, 1961.

  39. Fomenko, V.S., Emissionnye svoistva materialov. Spravochnik (Emission Properties of Materials: Reference Book), Kiev: Naukova Dumka, 1981.

  40. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Evaporation of Oxides), Moscow: Nauka, 1997.

  41. Beilis, I.I. and Lyubimov, G.A., Teplofiz.Vys. Temp., 1975, vol. 13, no. 6, p. 1137.

    Google Scholar 

  42. Bolotov, A., Kozyrev, A., and Korolev, Y., IEEE Trans. Plasma Sci., 1995, vol. 23, p. 884.

    Article  ADS  Google Scholar 

  43. Schultrich, B., Special arc modes with reduced macroparticle emission, in Tetrahedrally Bonded Amorphous Carbon Films I, Springer Series in Material Sciences, vol. 263, Berlin: Springer, 2018, p. 527.

  44. Polishchuk, V.P., Serdyukova, O.K., and Yartsev, I.M., Zh. Tekh. Fiz., 1993, vol. 63, p. 66.

    Google Scholar 

  45. Amirov, R.Kh., Vorona, N.A., Gavrikov, A.V., Lizyakin, G.D., Polishchuk, V.P., Samoilov, I.S., Smirnov, V.P., Usmanov, R.A., and Yartsev, I.M., Plasma Phys. Rep., 2015, vol. 41, p. 808.

    Article  ADS  Google Scholar 

  46. Bronin, S.Ya., Polishchuk, V.P., Sychev, P.E., Shabashov, V.I., and Yartsev, I.M., Teplofiz.Vys. Temp., 1993, vol. 31, no. 1, p. 29.

    Google Scholar 

  47. Amirov, R., Vorona, N., Gavrikov, A., Lizyakin, G., Polistchook, V., Samoylov, I., Smirnov, V., Usmanov, R., and Yartsev, I., J. Phys.: Conf. Ser., 2014, vol. 550, 012014.

    Google Scholar 

  48. Amirov, R.K., Vorona, N.A., Gavrikov, A.V., Liziakin, G.D., Polistchook, V.P., Samoylov, I.S., Smirnov, V.P., Usmanov, R.A., and Yartsev, I.M., J. Phys.: Conf. Ser., 2017, vol. 830, 012059.

    Google Scholar 

  49. Amirov, R.Kh., Vorona, N.A., Gavrikov, A.V., Zhabin, S.N., Lizyakin, G.D., Polishchuk, V.P., Samoilov, I.S., Smirnov, V.P., Usmanov, R.A., and Yartsev, I.M., Tr.Mosk. Fiz. Tekh. Inst., 2014, vol. 6, p. 136.

    Google Scholar 

  50. Anders, A. and Yushkov, G.Y., J. Appl. Phys., 2002, vol. 91, p. 4824.

    Article  ADS  Google Scholar 

  51. Schultrich, B., Vacuum arc discharges with carbon cathodes, in Tetrahedrally Bonded Amorphous Carbon Films I, Springer Series in Material Sciences, vol. 263, Berlin: Springer, 2018, p. 373.

  52. Veerasamy, V.S., Amaratunga, G.A.J., and Milne, W.I., IEEE Trans. Plasma Sci., 1993, vol. 21, p. 322.

    Article  ADS  Google Scholar 

  53. Koch, A.W., Nornberg, A.W., and Behrisch, R., J. Nucl. Mater., 1984, vol. 123, p. 1437.

    Article  ADS  Google Scholar 

  54. Chhowalla, M., Davis, C.A., Weiler, M., Kleinsorge, B., and Amaratunga, G.A.J., J. Appl. Phys., 1996, vol. 79, p. 2237.

    Article  ADS  Google Scholar 

  55. Batenin, V.M., Klimovskii, I.I., Polishchuk, V.P., and Sinel’shchikov, V.A., High Temp., 2003, vol. 41, no. 5, p. 586.

    Article  Google Scholar 

  56. Amirov, R.K., Antonov, N.N., Vorona, N.A., Gavrikov, A.V., Liziakin, G.D., Polistchook, V.P., Samoylov, I.S., Smirnov, V.P., Usmanov, R.A., and Yartsev, I.M., J. Phys.: Conf. Ser., 2015, vol. 653, p. 012164.

    Google Scholar 

  57. Amirov, R.K., Gavrikov, A.V., Liziakin, G.D., Polistchook, V.P., Samoylov, I.S., Smirnov, V.P., Usmanov, R.A., Vorona, N.A., and Yartsev, I.M., IEEE Trans. Plasma Sci., 2017, vol. 45, p. 140.

    Article  ADS  Google Scholar 

  58. Amirov, R.K., Antonov, N.N., Liziakin, G.D., Polistchook, V.P., Samoylov, I.S., Usmanov, R.A., and Yartsev, I.M., J. Phys.: Conf. Ser., 2015, vol. 653, 012165.

    Google Scholar 

  59. Polistchook, V.P., in Proc. Contrib. Papers 8th Int. Conf. Phys. Plasma Technol., Minsk, 2015, vol. 1, 47.

  60. Vetter, J., Scholl, H.J., and Knotek, O., Surf. Coat. Technol., 1995, vol. 1, p. 286.

    Article  Google Scholar 

  61. Kostrin, D.K., Lisenkov, A.A., and Potrakhov, N.N., Biomed. Eng., 2017, vol. 51, p. 262.

    Article  Google Scholar 

  62. Puchkarev, V.F. and Chesnokov, S.M., J. Phys. D: Appl. Phys., 1992, vol. 25, p. 1760.

    Article  ADS  Google Scholar 

  63. Goedicke, K., Scheffel, B., and Schiller, S., Surf. Coat. Technol., 1994, vol. 1, p. 799.

    Article  Google Scholar 

  64. Metzner, C., Scheffel, B., and Goedicke, K., Surf. Coat. Technol., 1996, vol. 1, p. 769.

    Article  Google Scholar 

  65. Kajioka, H., J. Vac. Sci. Technol., A, 1997, vol. 15, p. 2728.

    Article  ADS  Google Scholar 

  66. Scheffel, B., Modes, T., and Metzner, C., Surf. Coat. Technol., 2016, vol. 287, p. 138.

    Article  Google Scholar 

  67. Peng, H., Zhou, D., Zhang, J., Guo, H., and Gong, S., Surf. Coat. Technol., 2015, vol. 276, p. 645.

    Article  Google Scholar 

  68. Chayahara, A., Mokuno, Y., Kinomura, A., Tsubouchi, N., Heck, C., and Horino, Y., Surf. Coat. Technol., 2004, vol. 186, p. 157.

    Article  Google Scholar 

  69. Safonov, V., Probl. At. Sci. Technol., 2017, vol. 111, p. 65.

    Google Scholar 

  70. Usmanov, R.A., Amirov, R.K., Gavrikov, A.V., Liziakin, G.D., Melnikov, A.D., Polistchook, V.P., Samoylov, I.S., Smirnov, V.P., Vorona, N.A., and Yartsev, I.M., Plasma Sources Sci. Technol., 2020, vol. 29, 015004.

    Article  ADS  Google Scholar 

  71. Fiziko-khimicheskie svoistva okislov (Physicochemical Properties of Oxides), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1978.

    Google Scholar 

  72. Akopov, F.A. and Borovkova, L.B., High Temp., 2011, vol. 49, no. 6, p. 862.

    Article  Google Scholar 

  73. Massey, H., Negative Ions, Cambridge: Cambridge Univ. Press, 1976.

    Google Scholar 

  74. Bolotov, A.V., Kozyrev, A.V., and Korolev, Yu.D., Fiz. Plazmy, 1993, vol. 19, p. 709.

    Google Scholar 

  75. Benilov, M.S. and Benilova, L.G., IEEE Trans. Plasma Sci., 2015, vol. 43, p. 2247.

    Article  ADS  Google Scholar 

  76. Benilov, M.S. and Naidis, G.V., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 57, p. 2230.

    Article  Google Scholar 

  77. Almeida, N.A., Benilov, M.S., Benilova, L.G., Hartmann, W., and Wenzel, N., IEEE Trans. Plasma Sci., 2013, vol. 41, p. 1938.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We are grateful to V. I. Kiselev for his great help in performing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Polishchuk or R. A. Usmanov.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polishchuk, V.P., Usmanov, R.A., Melnikov, A.D. et al. Vacuum Arcs with Diffuse Cathode Attachment (Review). High Temp 58, 476–494 (2020). https://doi.org/10.1134/S0018151X20040124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20040124

Navigation