Skip to main content
Log in

A terahertz spectrometer with a pulsed high magnetic field

  • Electronics and Radio Engineering
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A terahertz (THz) spectrometer based on backward-wave tubes and combined with a pulsed-magnetic-field generator with a pulse duration of ∼100 μs and an amplitude of up to 50 T is described. This spectrometer is indented for studying magnetic resonances of various magnets in the THz frequency range (30 GHz-1.5 THz) in the Faraday (longitudinal field) and Voigt (transverse field) geometries. Its operating principle is based on measurements of the change in the transmission of polarized THz radiation by studied samples exposed to an applied pulsed magnetic field. Its advantage over the magnetic-resonance technique, in which radiation guides with uncontrolled radiation polarization are used, is the possibility of performing precise polarization measurements necessary for determining the conditions for excitation of resonance magnetic modes and yielding important information on the magnetic structure of materials. The results of polarization measurements of test samples are presented. The degree of radiation polarization is 99.99%; the dynamic measurement range is 25 dB; the measurement accuracy is no worse than 1%; the time resolution of the recording system is 1s; the magnetic-field inhomogeneities at the solenoid’s center at a base of ±2 mm are no worse than 1 (experimental) and 5% (calculated) for the axial and radial components, respectively; and the maximum stored energy is 40.5 kJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volkov, A.A., Kozlov, G.V., and Prokhorov, A.M., Infr. Phys., 1989, vol. 29, no. 24, p. 747.

    Article  ADS  Google Scholar 

  2. Golant, M.B., Alekseenko, Z.T., Korotkova, Z.S., et al., Prib. Tekh. Eksp., 1969, no. 3, p. 231.

  3. Gershenzon, E.M., Golant, M.B., Negirev, A.A., and Savel’ev, K.S., Lampy obratnoi volny millimetrovogo i submillimetrovogo diapazonov voln (Backward Wave Tubes of Millimeter and Submillimeter Wavelength Ranges), Devyatkov, N.D., Ed., Moscow: Radio i Svyaz’, 1985.

    Google Scholar 

  4. Foner, S., Phys. Rev., 1957, vol. 107, p. 683.

    Article  ADS  Google Scholar 

  5. Rudashevskii, E.G., Prokhorov, A.S., and Velikov, L.B., IEEE Trans. on Microwave Theory and Techniques, 1974, vol. MTT-22, p. 1064.

    Article  Google Scholar 

  6. Geller, S. and Gelleo, M.A., Acta Crystallogr., 1957, vol. 10, p. 230.

    Google Scholar 

  7. Lax, B. and Batton, K.J., Microwave Ferrites and Ferrimagnetics, New York: McGraw-Hill, 1962, p. 34.

    Google Scholar 

  8. Bozorth, R., Kramer, V., and Remeika, J.P., Phys. Rev. Lett., 1958, vol. 1, p. 3.

    Article  ADS  Google Scholar 

  9. Scherwood, R.C., Remeika, J.P., and Willjams, H.J., J. Appl. Phys., 1959, vol. 30, p. 217.

    Article  ADS  Google Scholar 

  10. Belov, K.P., Zvezdin, A.K., Kadomtseva, A.M., and Levitin, R.Z., in Orientatsionnye perekhody v redkozemel’nykh magnetikakh (Orientation Transitions in Rare-Earth Magnets), Moscow: Nauka, 1979, p. 12.

    Google Scholar 

  11. Morin, F.J., Phys. Rev., 1950, vol. 78, p. 819.

    Article  ADS  Google Scholar 

  12. Shull, C., Strauser, W., and Wollan, E., Phys. Rev., 1951, vol. 83, p. 333.

    Article  ADS  Google Scholar 

  13. Born, M. and Wolf, E., Principles of Optics, Oxford: Pergamon, 1986, p. 5.

    Google Scholar 

  14. Zvezdin, A.K. and Kotov, V.A., Modern Magnetooptics and Magnetooptical Materials, Bristol: Inst. of Physics, 1997, p. 23.

    Google Scholar 

  15. Aleksandrov, K.S., Bezmaternykh, L.N, Kozlov, G.V., et al., Zh. Eksp. Teor. Fiz., 1987, vol. 65, no. 3, p. 591.

    Google Scholar 

  16. Rudashevskii, E.G. and Shal’nikova, T.A., Zh. Eksp. Teor. Fiz., 1964, vol. 47, p. 886.

    Google Scholar 

  17. Balbashov, A.M., Berezin, A.G., Gufan, Yu.M., et al., Pis’ma Zh. Eksp. Teor. Fiz., 1985, vol. 41, no. 9, p. 391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Anzin.

Additional information

Original Russian Text © V.B. Anzin, S.P. Lebedev, A.A. Mukhin, O.E. Porodinkov, A.S. Prokhorov, I.E. Spektor, M.N. Kazeev, V.F. Kozlov, Yu.S. Tolstov, 2008, published in Pribory i Tekhnika Eksperimenta, 2008, No. 6, pp. 76–83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anzin, V.B., Lebedev, S.P., Mukhin, A.A. et al. A terahertz spectrometer with a pulsed high magnetic field. Instrum Exp Tech 51, 850–856 (2008). https://doi.org/10.1134/S0020441208060134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441208060134

PACS numbers

Navigation