Skip to main content
Log in

Growth of an InP/GaInAsP Heterostructure on a Shaped InP Substrate for Laser Diode-Based CO2 Sensing

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents a technological study aimed at growing buried-channel heterostructures for single-mode semiconductor lasers operating in the spectral range 1600–1610 nm. We have produced laser diodes with an emission wavelength corresponding to an overtone in the absorption band of carbon dioxide and assessed the effect of temperature on their optical emission spectra. It has been shown that their emission spectra can be tuned over the range from 1559 to 1620 nm. We have demonstrated the feasibility of producing intelligent fiber-optic systems for remote carbon dioxide concentration monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Semenov, S.M., Greenhouse effect and anthropogenic load on it, Solnechno-zemn. Fiz., 2012, no. 21, p. 10–17.

  2. Semenov, S.M. and Popov, I.O., Comparative estimates of influence of changes in carbon dioxide, methane, nitrous oxide, and water vapor concentrations on radiation-equilibrium temperature of Earth’s surface, Russ. Meteorol. Gidrol., 2011, vol. 36, no. 8, pp. 520–526. https://doi.org/10.3103/S1068373911080036

    Article  Google Scholar 

  3. Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Pachauri, R.K. and Meyer, L.A, Eds., Geneva: IPCC, 2014.

  4. Yanshin, A.L., Budyko, M.I., and Izrael’, Yu.A., Global warming and its consequences: strategy of the measures being taken, in Global’noe poteplenie biosfery (Global Warming of the Biosphere), Moscow: Nauka, 2001.

  5. Smirnov, B.M., Microphysics of Atmospheric Phenomena, Springer Nature, 2017. https://doi.org/10.1007/978-3-319-30813-5

  6. Kashin, F.V., Aref’ev, V.N., Sizov, N.I., Akimenko, R.M., and Upenek, L.B., Background component of carbon oxide concentrations in the surface air (Obninsk monitoring station), Izv. Atmos. Ocean. Phys., 2016, vol. 52, no. 3, pp. 247–252. https://doi.org/10.1134/S0001433816030051

    Article  Google Scholar 

  7. Aref'ev, V.N., Akimenko, R.M., Kashin, F.V., and Upenek, L.B., Background component of methane concentration in surface air (Obninsk monitoring station), Izv. Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 37–44. https://doi.org/10.1134/S0001433815060031

    Article  Google Scholar 

  8. Aref'ev, V.N., Kashin, F.V., Akimenko, R.M., Baranov, Yu.I., Baranova, E.L., Bugrim, G.I., Visheratin, K.N., Kal’sin, A.V., Kamenogradskii, N.E., Sizov, N.I., Ustinov, V.P., and Upenek, L.B., Studies in the field of atmospheric spectroscopy, in Problemy gidrologii i monitoringa okruzhayushchei sredy (Issues in Hydrology and environmental monitoring), Obninsk: GU NPO “Taifun,” 2010, pp. 85–104.

  9. Stanley, K.M., Grant, A., O’Doherty, S., Young, D., Manning, A.J., Stavert, A.R., Simmonds, P.G., Gerard Spain, T., Salameh, P.K., Harth, C.M., Sturges, W.T., Oram, D.E., and Derwent, R.G., Greenhouse gas measurements from a UK network of tall towers: technical description and first results, Atmos. Meas. Tech., 2018, vol. 11, no. 3, pp. 1437–1458. https://doi.org/10.5194/amt-11-1437-2018

    Article  CAS  Google Scholar 

  10. Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W., Bamberger, I., Meinhardt, F., Steinbacher, M., and Emmenegger, L., Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmos. Chem. Phys., 2016, no. 6, pp. 3683–3710. https://doi.org/10.5194/acp-16-3683-2016

  11. Hargreaves, R.J., Gordon, I.E., Rey, M., Nikitin, A.V., Tyuterev, V.G., Kochanov, R.V., and Rothman, L.S., An accurate, extensive, and practical line list of methane for the HITEMP database, Astrophys. J., Suppl. Ser., 2020, vol. 247, no. 2, paper 55. https://doi.org/10.3847/1538-4365/ab7a1a

  12. Akhmedov, E.R. and Ponurovskii, Ya.Ya., Gas analyzer based on a near-IR diode laser and remote fiber sensor for remote methane concentration measurements, Vestn. MGTU MIREA, 2015, no 2 (7), pp. 67–83.

  13. Cheng, W.H., Sheen, M.T., Wang, G.L., Wang, S.C., and Kuang, J.H., Fiber alignment shift formation mechanisms of fiber–solder–ferrule joints in laser module packaging, J. Light. Technol., 2001, vol. 19, no. 8, pp. 1177–1184. https://doi.org/10.1109/50.939799

    Article  CAS  Google Scholar 

  14. Lin, Y., Eichele, C., and Shi, F.G., Effect of welding sequence on welding-induced-alignment-distortion in packaging of butterfly laser diode modules: simulation and experiment, J. Light. Technol., 2005, vol. 23, no. 2, pp. 615–623. https://doi.org/10.1109/JLT.2004.841780

    Article  Google Scholar 

  15. Chentsov, A.V., Voronina, Yu.V., and Chesnokova, T.Yu., Modeling of atmospheric transmission with various absorption profiles of CO2 lines, Opt. Atmos. Okeana, 2013, vol. 26, no. 9, pp. 711–715.

    Google Scholar 

  16. Rothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.F., Birk, M., Boudon, V., Brown, L.R., and Campargue, A., Champion, J.-P., et al., The HITRAN 2008 molecular spectroscopic database, J. Quantum. Spectrosc. Radiat. Transfer, 2009, vol. 110, no. 9, pp. 533–572. https://doi.org/10.1016/j.jqsrt.2009.02.013

    Article  CAS  Google Scholar 

  17. Hartmann, J.-M., Tran, H., and Toon, G.C., Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions, Atmos. Chem. Phys., 2009, vol. 9, no. 19, pp. 7303–7312. https://doi.org/10.5194/acp-9-7303-2009

    Article  CAS  Google Scholar 

  18. Selin, A.A., Khanin, V.V., and Vasil’ev, M.G., Analysis of the effect of heterogeneous equilibria on the crystallization behavior of epitaxial multicomponent solid solutions, Zh. Fiz. Khim., 1984, vol. 58, no. 12, pp. 2996–3001.

    CAS  Google Scholar 

  19. Vasil’ev, M.G., Selin, A.A., and Shelyakin, A.A., Experimental statistical-model of the process of liquid-phase epitaxy of InP/GaInAsP heterostructures, Izv. Akad. Nauk SSSR, Inorg. Mater., 1985, vol. 21, no. 6, pp. 775–777.

    Google Scholar 

  20. Vigdorovich, V.N., Selin, A.A., Khanin, V.A., and Vasil’ev, M.G., Position of tie lines in systems containing multicomponent solid solutions, in Raschety i eksperimental’nye metody postroeniya diagramm sostoyaniya (Calculations and Experimental Methods for Constructing Phase Diagrams), Moscow: Nauka, 1985, pp. 127–130.

  21. Vasil’ev, M.G., Vasil’ev, A.M., Kostin, Yu.O., Shelyakin, A.A., and Izotov, A.D., Buried crescent InP/InGaAsP/InP heterostructure on p-InP for edge-emitting diodes, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1170–1173. https://doi.org/10.1134/S0020168517110164

    Article  Google Scholar 

  22. Vasil’ev, M.G., Vasil’ev, A.M., Kostin, Yu.O., Izotov, A.D., and Shelyakin, A.A., Creation of buried heterostructures for microwave laser diodes, Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 5, pp. 1071–1077. https://doi.org/10.1134/S2075113320050342

    Article  Google Scholar 

  23. Vasil’ev, M.G., Vasil’ev, A.M., Izotov, A.D., Kostin, Yu.O., and Shelyakin, A.A., Growing epitaxial layers of InP/InGaAsP heterostructures on the profiled InP surfaces by liquid-phase epitaxy, Condens. Matter Interphases, 2021, vol. 23, no. 2, pp. 204–211. https://doi.org/10.17308/kcmf.2021.23/3430

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Vasil’ev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, M.G., Vasil’ev, A.M., Izotov, A.D. et al. Growth of an InP/GaInAsP Heterostructure on a Shaped InP Substrate for Laser Diode-Based CO2 Sensing. Inorg Mater 58, 785–791 (2022). https://doi.org/10.1134/S0020168522080131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522080131

Keywords:

Navigation