Skip to main content
Log in

Synthesis and Optical Properties of R2O2S:Ln3+ (R = Gd, Y; Ln = Eu, Tb)

  • Published:
Inorganic Materials Aims and scope

Abstract—

An (Y0.95Eu0.05)2O2S solid solution (hexagonal crystal system, sp. gr. P3m1, a = 3.810 Å, c = 6.62 Å, V = 83.269 Å3) has been prepared via hydrogen reduction of the (Y0.95Eu0.05)2(SO4)3 sulfate, followed by sulfidation of the reaction products. Heat treatment in flowing H2S of (Gd0.95Tb0.05)2(SO4)3 and (Gd0.95Tb0.05)2O3 prepared via cohydrolysis of gadolinium and terbium sulfates in a water–alcohol solution of urea and annealed in an inert atmosphere has been shown to yield (Gd0.95Tb0.05)2O2S (hexagonal crystal system, a = 3.852 Å, c = 6.668 Å, V = 89.53 Å3). We have determined the phase composition of the synthesized samples, investigated their morphology, and examined the effect of the synthesis method on the shape and size of their particles. Investigation of the optical properties of the synthesized phosphors has demonstrated that all of them exhibit efficient luminescence in the green spectral region under UV excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Denisenko, Yu.G., Khritokhin, N.A., Andreev, O.V., Basova, S.A., Sal’nikova, E.I., and Polkovnikov, A.A., Thermal decomposition of europium sulfates Eu2(SO4)3·8H2O and EuSO4, J. Solid State Chem., 2017, vol. 255, pp. 219–224.https://doi.org/10.1016/j.jssc.2017.08.020

    Article  CAS  Google Scholar 

  2. Osseni, S.A., Denisenko, Yu.G., Fatombi, J.K., Sal’nikova, E.I., and Andreev, O.V., Synthesis and characterization of Ln2O2SO4 (Ln = Gd, Ho, Dy and Lu) nanoparticles obtained by coprecipitation method and study of their reduction reaction under H2 flow, J. Nanostruct. Chem., 2017, no. 7, pp. 337–343.https://doi.org/10.1007/s40097-017-0243-4

  3. Denisenko, Yu.G., Molokeev, M.S., Krylov, A.S., Aleksandrovsky, A.S., Oreshonkov, A.S., Atuchin, V.V., Azarapin, N.O., Plyusnin, P.E., Sal’nikova, E.I., and Andreev, O.V., High-temperature oxidation of europium(II) sulfide, J. Ind. Eng. Chem., 2019, vol. 79, pp. 62–70.https://doi.org/10.1016/j.jiec.2019.05.006

    Article  CAS  Google Scholar 

  4. Denisenko, Yu.G., Sedykh, A.E., Basova, S.A., Atuchin, V.V., Molokeev, M.S., Aleksandrovsky, A.S., Krylov, A.S., Oreshonkov, A.S., Khritokhin, N.A., Sal’nikova, E.I., Andreev, O.V., and Müller-Buschbaum, K., Exploration of the structural, spectroscopic and thermal properties of double sulfate monohydrate NaSm(SO4)2·H2O and its thermal decomposition product NaSm(SO4)2, Adv. Powder Technol., 2021, vol. 32, no. 11, pp. 3943–3953.https://doi.org/10.1016/j.apt.2021.08.009

    Article  CAS  Google Scholar 

  5. Veselova, V.O., Yurlov, I.A., Ryabochkina, P.A., Dudkina, T.D., and Egorysheva, A.V., Synthesis and luminescent properties of nanocrystalline (1 – x)ZrO2xEr2O3 (x = 0.015–0.5) solid solutions, Russ. J. Inorg. Chem., 2020, vol. 65, no. 9, pp. 1298–1303.https://doi.org/10.1134/S0036023620090211

    Article  CAS  Google Scholar 

  6. Kolesnik, I.V., Shcherbakov, A.B., Kozlova, T.O., Kozlov, D.A., and Ivanov, V.K., Comparative analysis of sun protection characteristics of nanocrystalline cerium dioxide, Russ. J. Inorg. Chem., 2020, vol. 65, no. 7, pp. 960–966.https://doi.org/10.1134/S0036023620070128

    Article  CAS  Google Scholar 

  7. Andreev, O.V., Denisenko, Yu.G., Sal’nikova, E.I., Khritokhin, N.A., and Zyryanova, K.S., Specifics of reactions of cerium sulfate and europium sulfate with hydrogen, Russ. J. Inorg. Chem., 2016, vol. 61, no. 3, pp. 296–301. https://doi.org/10.1134/S0036023616030025

    Article  CAS  Google Scholar 

  8. Steblevskaya, N.I., Belobeletskaya, M.V., and Medkov, M.A., Luminescent properties of lanthanum borates LaBO3:Eu and La(BO2)3:Eu obtained by the extraction-pyrolytic method, Russ. J. Inorg. Chem., 2021, vol. 66, no. 4, pp. 486–476.https://doi.org/10.1134/S0036023621040215

    Article  Google Scholar 

  9. Luk’yashin, K.E. and Ishchenko, A.V., Synthesis and optical properties of YAG : Ce ceramics with a high cerium concentration, Russ. J. Inorg. Chem., 2021, vol. 66, no. 8, pp. 1203–1211.https://doi.org/10.1134/S0036023621080131

    Article  Google Scholar 

  10. Yu, L., Li, F., and Liu, H., Fabrication and photoluminescent characteristics of one-dimensional La2O2S:Eu3+ nanocrystals, J. Rare Earths, 2013, vol. 31, no. 4, pp. 356–359.https://doi.org/10.1016/S1002-0721(12)60285-3

    Article  CAS  Google Scholar 

  11. Jiang, G., Wei, X., Chen, Y., Duan, C., Yin, M., Yang, B., and Cao, W., Luminescent La2O2S:Eu3+ nanoparticles as non-contact optical temperature sensor in physiological temperature range, Mater. Lett., 2015, vol. 143, pp. 98–100.https://doi.org/10.1016/j.matlet.2014.12.057

    Article  CAS  Google Scholar 

  12. Shah, K., Ciric, A., Murthy, K.V.R., and Chakrabarty, B.S., Investigation of a new way of synthesis for nano crystallites of La2O2S & 1%Ln3+ (Ln = Pr, Eu, Tb, Dy, Er) doped La2O2S and study their structural and optical properties, J. Alloys Compd., 2021, vol. 851, paper 156725.https://doi.org/10.1016/j.jallcom.2020.156725

  13. Lu, X., Yang, L., Ma, Q., Tian, J., and Dong, X., A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor, J. Mater. Sci.: Mater. Electron., 2014, vol. 25, pp. 5388–5394.https://doi.org/10.1007/s10854-014-2317-0

    Article  CAS  Google Scholar 

  14. Osseni, S.A., Lechevallier, S., Verelst, M., Dujardin, Ch., Dexpert-Ghys, J., Neumeyer, D., Leclercq, M., Baaziz, H., Cussac, D., Santran, V., and Mauricot, R., New nanoplatform based on Gd2O2S:Eu3+ core: synthesis, characterization and use for in vitro bio-labelling, J. Mater. Chem., 2011, vol. 21, pp. 18365–18372.https://doi.org/10.1039/C1JM13542B

    Article  CAS  Google Scholar 

  15. Osseni, S.A., Lechevallier, S., Verelst, M., Perriat, P., Dexpert-Ghys, J., Neumeyer, D., Garcia, R., Mayer, F., Djanashvili, K., Peters, J.A., Magdeleine, E., Gros-Dagnac, H., Celsis, P., and Mauricot, R., Gadolinium oxysulfide nanoparticles as multimodal imaging agents for T 2-weighted MR, X-ray tomography and photoluminescence, Nanoscale, 2014, vol. 6, pp. 555–564.https://doi.org/10.1039/C3NR03982J

    Article  CAS  PubMed  Google Scholar 

  16. Thirumalai, J., Chandramohan, R., Valanarasu, S., Vijayan, T.A., Somasundaram, R.M., Mahalingam, T., and Srikumar, S.R., Shape-selective synthesis and opto-electronic properties of Eu3+-doped gadolinium oxysulfide nanostructures, J. Mater. Sci., 2009, vol. 44, pp. 3889–3899.https://doi.org/10.1007/s10853-009-3531-7

    Article  CAS  Google Scholar 

  17. Xia, T., Cao, W.H., Luo, X.X., and Tian, Y., Combustion synthesis and spectra characteristic of Gd2O2S:Tb3+ and La2O2S:Eu3+ X-ray phosphors, J. Mater. Res., 2005, vol. 20, no. 9, pp. 2274–2278.https://doi.org/10.1557/jmr.2005.0301

    Article  CAS  Google Scholar 

  18. Rodionova, A.V., Kuular, V.I., Minakova, T.S., Ustabaev, P.Sh., and Bakhmetyev, V.V., Acid–base and luminescent properties of Gd2O2S:Tb luminescent phosphors synthesized in a reducing atmosphere, Key Eng. Mater, 2020, vol. 854, pp. 57–63. https://doi.org/10.4028/www.scientific.net/KEM.854.57

  19. Han, L., Pan, M., Lv, Y., Gu, Y., Wang, X., Li, D., Kong, Q., and Dong, X., Fabrication of Y2O2S:Eu3+ hollow nanofibers by sulfurization of Y2O3:Eu3+ hollow nanofibers, J. Mater. Sci.: Mater. Electron., 2015, vol. 26, pp. 677–684.https://doi.org/10.1007/s10854-014-2449-2

    Article  CAS  Google Scholar 

  20. Guo, C., Luan, L., Chen, C., Huang, D., and Su, Q., Preparation of Y2O2S:Eu3+ phosphors by a novel decomposition method, Mater. Lett., 2008, vol. 62, nos. 4–5, pp. 600–602.https://doi.org/10.1016/j.matlet.2007.06.016

    Article  CAS  Google Scholar 

  21. Sundararannan, B. and Kottaisamy, M., Synthesis and characterization of near UV excitable Y2O2S:Eu3+ entrapped ZnO for white light emitting diode applications, J. Solid State Chem., 2021, vol. 293, paper 121739.https://doi.org/10.1016/j.jssc.2020.121739

  22. Cheng, B.M., Duan, C.K., and Tanner, P.A., Vacuum ultraviolet and visible spectra of Eu3+ in Y2O2S and Eu2O2S, Opt. Mater., 2009, vol. 31, no. 6, pp. 902–904.https://doi.org/10.1016/j.optmat.2008.10.036

    Article  CAS  Google Scholar 

  23. Chou, T.W., Mylswamy, S., Liu, R.S., and Chuang, S.Z., Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes, Solid State Commun., 2005, vol. 136, pp. 205–209.https://doi.org/10.1016/j.ssc.2005.07.032

    Article  CAS  Google Scholar 

  24. Zhao, Q., Zheng, Y., Guo, N., Jia, Y., Qiao, H., Lv, W., and You, H., 3D-Hierarchical Lu2O2S:Eu3+ micro/nano-structures: controlled synthesis and luminescence properties, CrystEngComm, 2012, vol. 14, pp. 6659–6664.https://doi.org/10.1039/C2CE25631B

    Article  CAS  Google Scholar 

  25. Tan, S., Paglieri, S.N., and Li, D., Nano-scale sulfur-tolerant lanthanide oxysulfide/oxysulfate catalysts for water–gas-shift reaction in a novel reactor configuration, Catal. Commun., 2016, vol. 73, pp. 16–21.https://doi.org/10.1016/j.catcom.2015.10.007

    Article  CAS  Google Scholar 

  26. Denisenko, Yu.G., Sal’nikova, E.I., Basova, S.A., Molokeev, M.S., Krylov, A.S., Aleksandrovsky, A.S., Oreshonkov, A.S., Atuchin, V.V., Volkova, S.S., Khritokhin, N.A., and Andreev, O.V., Synthesis of samarium oxysulfate Sm2O2SO4 in the high-temperature oxidation reaction and its structural, thermal and luminescent properties, Molecules, 2020, vol. 25, no. 6, paper 1330.https://doi.org/10.3390/molecules25061330

  27. Denisenko, Y.G., Sedykh, A.E., Molokeev, M.S., Oreshonkov, A.S., Aleksandrovsky, A.S., Krylov, A.S., Khritokhin, N.A., Sal’nikova, E.I., Andreev, O.V., and Müller-Buschbaum, K., Crystal and electronic structure, thermochemical and photophysical properties of europium–silver sulfate monohydrate AgEu(SO4)2·H2O, J. Solid State Chem., 2021, vol. 294, paper 121898. https://doi.org/:10.1016/j.jssc.2020.121898

  28. Oreshonkov, A.S., Roginskii, E.M., Shestakov, N.P., Gudim, I.A., Temerov, V.L., Nemtsev, I.V., Molokeev, M.S., Adichtchev, S.V., Pugachev, A.M., and Denisenko, Yu.G., Structural, electronic and vibrational properties of YAl3(BO3)4, Materials, 2020, vol. 13, paper 545.https://doi.org/10.3390/ma13030545

  29. Hakmeh, N., Chlique, Ch., Merdrignac-Conanec, O., Fan, B., Cheviré, F., Zhang, X., Fan, X., and Qiao, X., Combustion synthesis and up-conversion luminescence of La2O2S:Er3+,Yb3+ nanophosphors, J. Solid State Chem., 2015, vol. 226, pp. 255–261.https://doi.org/10.1016/j.jssc.2015.02.015

    Article  CAS  Google Scholar 

  30. Yang, Y., Mi, C., Yu, F., Su, X., Guo, C., Li, G., Zhang, J., Liu, L., Liu, Y., and Li, X., Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor, Ceram. Int., 2014, vol. 40, no. 7, part A, pp. 9875–9880.https://doi.org/10.1016/j.ceramint.2014.02.081

  31. Som, S., Mitra, P., Kumar, V., Kumar, V., Terblans, J.J., Swart, H.C., and Sharma, S.K., The energy transfer phenomena and colour tunability in Y2O2S:Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications, Dalton Trans., 2014, vol. 43, pp. 9860–9871.https://doi.org/10.1039/C4DT00349G

    Article  CAS  PubMed  Google Scholar 

  32. Andreev, P.O., Sal’nikova, E.I., Andreev, O.V., Denisenko, Yu.G., and Kovenskii, I.M., Synthesis and upconversion luminescence spectra of (Y1 – x yYbxEry)2O2S solid solutions, Inorg. Mater., 2017, vol. 53, no. 2, pp. 185–191.https://doi.org/10.1134/S0020168517020029

    Article  CAS  Google Scholar 

  33. Kumar, G.A., Pokhrel, M., Martinez, A., Dennis, R.C., Villegas, L.L., and Sardar, D.K., Synthesis and spectroscopy of color tunable Y2O2S:Yb3+,Er3+ phosphors with intense emission, J. Alloys Compd., 2012, vol. 513, pp. 559–565.https://doi.org/10.1016/j.jallcom.2011.11.006

    Article  CAS  Google Scholar 

  34. Wang, H., Xing, M., Luo, X.X., Zhou, X., Fu, Y., Jiang, T., Peng, Y., Ma, Y., and Duan, X., Upconversion emission colour modulation of Y2O2S:Yb,Er under 1.55 μm and 980 nm excitation, J. Alloys Compd., 2014, vol. 587, pp. 344–348.https://doi.org/10.1016/j.jallcom.2013.10.163

    Article  CAS  Google Scholar 

  35. Lu, X., Yang, M., Yang, L., Ma, Q., Dong, X., and Tian, J., Y2O2S:Yb3+,Er3+ nanofibers: novel fabrication technique, structure and up-conversion luminescent characteristics, J. Mater. Sci.: Mater. Electron., 2015, vol. 26, pp. 4078–4084.https://doi.org/10.1007/s10854-015-2947-x

    Article  CAS  Google Scholar 

  36. Jiao, J., Liu, Y., Wang, H., Yin, X., Xing, M., Luo, X., and Tian, Y., Enhancing upconversion luminescence and thermal sensing properties of Er/Yb co-doped oxysulfide core–shell nanocrystals, J. Am. Ceram. Soc., 2021, vol. 104, no. 2, pp. 985–994.https://doi.org/10.1111/jace.17509

    Article  CAS  Google Scholar 

  37. Ajithkumar, G., Yoo, B., Goral, D.E., Hornsby, P.J., Lin, A.-L., Ladiwala, U., Dravid, V.P., Dhiraj, K., and Sardar, D.K., Multimodal bioimaging using a rare earth doped Gd2O2S:Yb/Er phosphor with upconversion luminescence and magnetic resonance properties, J. Mater. Chem. B, 2013, vol. 1, pp. 1561–1572.https://doi.org/10.1039/C3TB00551H

    Article  CAS  Google Scholar 

  38. Sal’nikova, E.I., Denisenko, Yu.G., Kolesnikov, I.E., Lahderanta, E., Andreev, O.V., Azarapin, N.O., Basova, S.A., Gubin, A.A., and Oreshonkov, A.S., Synthesis and luminescent properties of (RE0.95Ln0.05)2O2S (RE = La, Y; Ln = Ho, Tm), J. Solid State Chem., 2021, vol. 293, paper 121753.https://doi.org/10.1016/j.jssc.2020.121753

  39. Sal’nikova, E.I., Denisenko, Yu.G., Aleksandrovsky, A.S., Kolesnikov, I.E., Lahderanta, E., Andreev, P.O., Azarapin, N.O., Andreev, O.V., Basova, S.A., and Matigorov, A.V., Synthesis and optical properties RE2O2S:Ln (RE = La, Y; Ln = Ce, Eu, Dy, Er), J. Solid State Chem., 2019, vol. 279, paper 120964.https://doi.org/10.1016/j.jssc.2019.120964

  40. Dai, Q., Song, H., Wang, M., Bai, X., Dong, B., Qin, R., Qu, X., and Zhang, H., Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals, J. Phys. Chem. C, 2008, vol. 112, no. 49, pp. 19399–19404.https://doi.org/10.1021/jp808343f

    Article  CAS  Google Scholar 

  41. Krauss, R.H., Hellier, R.G., and McDaniel, J.C., Surface temperature imaging below 300 K using La2O2S:Eu, Appl. Opt., 1994, vol. 33, no. 18, pp. 3901–3904.https://doi.org/10.1364/AO.33.003901

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Sal’nikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sal’nikova, E.I., Denisenko, Y.G. & Andreev, O.V. Synthesis and Optical Properties of R2O2S:Ln3+ (R = Gd, Y; Ln = Eu, Tb). Inorg Mater 58, 516–524 (2022). https://doi.org/10.1134/S0020168522050089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522050089

Keywords:

Navigation