Skip to main content
Log in

Shape-selective synthesis and opto-electronic properties of Eu3+-doped gadolinium oxysulfide nanostructures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2009

This article has been updated

Abstract

A simple and facile hydrothermal route has been demonstrated for the shape-selective preparation of highly crystalline Gd2O2S:Eu3+ nanostructures, such as nanocrystals/nanoplates, nanosheets, nanobelts, nanotubes, nanorods, and nanowires are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), photoluminescence (PL) techniques. The as-prepared samples are characterized using X-ray photoelectron spectra (XPS), to investigate the elementary states on the surfaces. The concentration of precursor chemicals, pH, the reaction time, and the temperature are important factors in the morphological control of Gd2O2S:Eu3+ nanostructures. The adjustment of these parameters can lead to an obvious shape evolution of products. The origin and nature of the opto-electronic transitions were observed using opto-impedance measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Alivisatos AP (1996) Science 271:933

    Article  CAS  Google Scholar 

  2. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353

    Article  CAS  Google Scholar 

  3. Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Chem Mater 14:4172

    Article  CAS  Google Scholar 

  4. Geng J, Lu D, Zhu J, Chen H (2006) J Phys Chem B 110:13777

    Article  CAS  Google Scholar 

  5. Tang Q, Zhou WJ, Ou SM, Jiang K, Yu WC, Qian YT (2005) Cryst Growth Des 5:147

    Article  CAS  Google Scholar 

  6. Liu ZP, Peng S, Xie Q, Hu ZK, Yang Y, Zhang SY, Qian YT (2003) Adv Mater 15:936

    Article  CAS  Google Scholar 

  7. Xie G, Qiao ZP, Zeng MH, Chen XM, Gao SL (2004) Cryst Growth Des 4:513

    Article  CAS  Google Scholar 

  8. Wang H, Zhu JJ, Zhu JM, Chen HY (2002) J Phys Chem B 106:3848

    Article  CAS  Google Scholar 

  9. Thirumalai J, Chandramohan R, Sekar M, Rajachandrasekar R (2008) J Nanopart Res 10:455

    Article  CAS  Google Scholar 

  10. Thirumalai J, Chandramohan R, Divakar R, Mohandas E, Sekar M, Parameswaran P (2008) Nanotechnology 19:395703

    Article  CAS  Google Scholar 

  11. Nakkiran A, Thirumalai J, Jagannathan R (2007) Chem Phys Lett 436:155

    Article  CAS  Google Scholar 

  12. Peng ZA, Peng XG (2001) J Am Chem Soc 123:1389

    Article  CAS  Google Scholar 

  13. Wang X, Li Y (2003) Chem Eur J 9:5627

    Article  CAS  Google Scholar 

  14. Royce MR (1968) US Patent Specification 3(418):246

    Google Scholar 

  15. Yeboah C, Pistorius S (2000) Med Phys 27:330

    Article  CAS  Google Scholar 

  16. Raukas M, Mishra KC, Peters C, Schmidt PC, Johnson KH, Choi J, Happek U (2000) J Lumin 87–89:980

    Article  Google Scholar 

  17. Kong YC, Yu DP, Zhang B, Fang W, Feng SQ (2001) Appl Phys Lett 78:407

    Article  CAS  Google Scholar 

  18. Xu CX, Sun XW, Dong ZL, Yu MB (2004) Appl Phys Lett 85:3878

    Article  CAS  Google Scholar 

  19. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897

    Article  CAS  Google Scholar 

  20. Johnson JC, Yan H, Yang P, Saykally RJ (2003) J Phys Chem B 107:8816

    Article  CAS  Google Scholar 

  21. Kind H, Yan H, Messer B, Law M, Yang P (2002) Adv Mater 14:158

    Article  CAS  Google Scholar 

  22. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2004) Appl Phys Lett 84:3654

    Article  CAS  Google Scholar 

  23. Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947

    Article  CAS  Google Scholar 

  24. Law M, Greene LE, Jhonson JC, Saykally R, Yang P (2005) Nat Mater 4:455

    Article  CAS  Google Scholar 

  25. Zhang BP, Binh NT, Wakatsuki K, Segawa Y, Yamada Y, Usami N, Kawasaki M, Koinuma H (2004) Appl Phys Lett 84:4098

    Article  CAS  Google Scholar 

  26. Wang BG, Shi EW, Zhong WZ (1998) Cryst Res Technol 33:937

    Article  CAS  Google Scholar 

  27. Jun YW, Lee SM, Kang NJ, Cheon J (2001) J Am Chem Soc 123:5150

    Article  CAS  Google Scholar 

  28. Fang YP, Xu AW, You LP, Song RQ, Yu JC, Zhang HX, Li Q, Liu HQ (2003) Adv Funct Mater 13:955

    Article  CAS  Google Scholar 

  29. Wang X, Sun X, Yu D, Zou B, Li YD (2002) Adv Mater 41:1442

    Google Scholar 

  30. Suslick KS, Fang M, Hyeon T (1996) J Am Chem Soc 118:11960

    Article  CAS  Google Scholar 

  31. Yu JC, Yu J, Ho W, Zhang L (2001) Chem Commun 1942

  32. Dhas NA, Suslick KS (2005) J Am Chem Soc 127:2368

    Article  CAS  Google Scholar 

  33. Wang X, Li YD (2002) J Am Chem Soc 124:2880

    Article  CAS  Google Scholar 

  34. Li YD, Wang JW, Deng ZX, W u YY, Sun XM, Yu DP, Yang PD (2001) J Am Chem Soc 123:9904

    Article  CAS  Google Scholar 

  35. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, MN

    Google Scholar 

  36. Blasse G (1992) Phys Status Solidi A 130:K85

    Article  CAS  Google Scholar 

  37. Bang J, Abboudi M, Abrams B, Holloway PH (2004) J Lumin 106:177

    Article  CAS  Google Scholar 

  38. Nakamoto K (1997) Infrared and Raman spectra of inorganic coordination compounds, 5th edn. John Wiley & Sons, New York

    Google Scholar 

  39. Heath JR, Shiang JJ (1998) Chem Soc Rev 27:65

    Article  CAS  Google Scholar 

  40. Bisquert J (2002) Electrochimica Acta 47:2435

    Article  CAS  Google Scholar 

  41. Bockris JÓM, Khan SUM (1993) Surface electrochemistry: a molecular level approach. Plenum Press, New York

    Book  Google Scholar 

Download references

Acknowledgements

One of the authors J. Thirumalai wishes to thank the Director of Collegiate Council, Chennai for providing fellowship and gratefully thank NIIST (CSIR), Trivandrum, IGCAR, Kalpakkam, IIT–Bombay, Mumbai, and IICT (CSIR), Hyderabad for extending instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandramohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirumalai, J., Chandramohan, R., Valanarasu, S. et al. Shape-selective synthesis and opto-electronic properties of Eu3+-doped gadolinium oxysulfide nanostructures. J Mater Sci 44, 3889–3899 (2009). https://doi.org/10.1007/s10853-009-3531-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3531-7

Keywords

Navigation