Skip to main content
Log in

Magnesiothermic Preparation of Molybdenum–Chromium Alloy Powders

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the process underlying the preparation of molybdenum–chromium alloy powders via the magnesium vapor reduction of the Cr2(MoO4)3 chromium molybdate in the temperature range from 700 to 800°C at residual argon pressures in the reactor from 5 to 15 kPa and obtained powders of Mo0.3Cr0.7 alloy, a mixture of Mo0.3Cr0.7 and Mo0.7Cr0.3 alloys, and alloys of a continuous series of MoхCr1 – х (0 < x < 1) solid solutions. The powders range in specific surface area from 33 to 48 m2/g and have a mesoporous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Tablitsy fizicheskikh velichin (Tables of Physical Quantities), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.

    Google Scholar 

  2. Xiao, M., Li, F., Xie, H., and Wang, Y., Characterization of strengthening mechanism and hot deformation behavior of powder metallurgy molybdenum, Mater. Des., 2012, vol. 34, no. 2, pp. 112–119.

    Article  CAS  Google Scholar 

  3. Shields, J.A., Applications of Molybdenum Metal and Its Alloys, London: IMOA, 2013.

    Google Scholar 

  4. Jones, E.S., Mosher, J.F., Speiser, R., and Spretnak, J.W., The oxidation of molybdenum, Corrosion, 1958, vol. 14, no. 1, pp. 20–26.https://doi.org/10.5006/0010-9312-14.1.20

    Article  Google Scholar 

  5. Zaitsev, A.A., Korotkov, N.A., and Lazarev, E.M., Oxidation of molybdenum and molybdenum–tungsten alloys, Metalloved. Term. Obrab. Met., 1976, no. 10, pp. 34–38. https://doi.org/10.1007/bf00705195

  6. Dubinin, G.N. and Mulyakaev, L.M., Thermal stability of chromated molybdenum, Metalloved. Term. Obrab. Met., 1969, no. 11, pp. 35–39.https://doi.org/10.1007/BF00655521

  7. Lee, D.-B. and Simkovich, G., Oxidation of molybdenum–chromium–palladium alloys, Oxid. Met., 1990, vol. 34, no. 12, pp. 13–22.

    Article  CAS  Google Scholar 

  8. Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Landolt-Börnstein, New Series IV, vol. 5d, Madelung, O., Ed., Berlin: Springer, 1994.

    Google Scholar 

  9. Barin, I. and Platzki, G., Thermochemical Data of Pure Substances, Weinheim: VCH, 1995.

    Book  Google Scholar 

  10. Odusote, Y.A. and Popoola, A.I., Thermodynamic and surface properties of Cr–X, (X = Mo, Fe) liquid alloys, Am. J. Condens. Matter Phys., 2017, vol. 7, no. 10, pp. 57–66.https://doi.org/10.5923/j.ajcmp.20170703.01

    Article  Google Scholar 

  11. Hahn, J.D., Wu, F., and Bellon, P., Cr–Mo solid solutions forced by high-energy ball milling, Metall. Mater. Trans. A, 2004, vol. 35, no. 10, pp. 1105–1111.https://doi.org/10.1007/s11661-004-1013-8

    Article  Google Scholar 

  12. Sun, C.-F., Xi, S.-Q., Zhang, Y., et al., Thermodynamic characteristic and phase evolution in immiscible Cr–Mo binary alloys, Acta Metall. Sin., 2015, vol. 28, no. 8, pp. 1074–1081.https://doi.org/10.1007/s40195-015-0297-6

    Article  CAS  Google Scholar 

  13. Sun, C.F., Xi, S.Q., Zhang, Y., et al., Synthesising amorphous Cr–Mo alloy via mechanical alloying of immiscible Cr and Mo elements, Mater. Res. Innovations, 2015, vol. 19, pp. S1-308–S1-311.https://doi.org/10.1179/1432891715Z.0000000001493

  14. Sun, C., Hai, X., Xi, S., et al., New insights of solid-state alloying and amorphous–nanocrystalline cyclic phase transitions during Cr–40 wt. % Mo powder milling, J. Alloys Compd., 2018, vol. 731, no. 1, pp. 667–677.https://doi.org/10.1016/j.jallcom.2017.10.083

    Article  CAS  Google Scholar 

  15. Edigaryan, A.A. and Polukarov, Yu.M., Electrodeposition of chromium and its alloys from Cr(III) sulfate solutions, Gal’vanotekh. Obrab. Poverkhn., 2001, vol. 9, no. 3, pp. 17–24.

    CAS  Google Scholar 

  16. Kuznetsov, V.V. and Matveev, D.V., Electrodeposition of chromium–molybdenum alloy from electrolyte based on chromium(III) sulfate, Russ. J. Electrochem., 2008, vol. 44, no. 6, pp. 740–744.https://doi.org/10.1134/S1023193508060153

    Article  CAS  Google Scholar 

  17. Kolosov, V.N., Miroshnichenko, M.N., and Prokhorova, T.Yu., Preparation of Mo–W alloy powders via magnesium vapor reduction of complex oxide compounds, Tr. Kol’skogo Nauchn. Tsentra Ross. Akad. Nauk, 2018, issue 9, part 1, no. 1, pp. 285–289.https://doi.org/10.25702/KSC.2307-5252.2018.9.1.285-289

  18. Kolosov, V.N., Miroshnichenko, M.N., and Prokhorova, T.Yu., Magnesium vapor reduction of complex double compounds of molybdenum with tungsten, J. Phys. Conf. Ser., 2019, vol. 1347, paper 012128.https://doi.org/10.1088/1742-6596/1347/1/012128

  19. Wu, M.-Y., Wang, L., Jia, Y., et al., Theoretical study of hydration in Y2Mo3O12: effects on structure and negative thermal expansion, AIP Adv., 2015, vol. 5, paper 027126.https://doi.org/10.1063/1.4913361

  20. Marinkovic, B.A., Jardim, P.M., de Avillez, R.R., and Rizzo, F., Negative thermal expansion in Y2Mo3O12, Solid State Sci., 2015, vol. 7, no. 11, pp. 1377–1383.https://doi.org/10.1016/j.solidstatesciences.2005.08.012

    Article  CAS  Google Scholar 

  21. Tyagi, A.K., Achary, S.N., and Mathews, M.D., Phase transition and negative thermal expansion in A2(MoO4)3 system (A = Fe3+, Cr3+ and Al3+), J. Alloys Compd., 2002, vol. 339, nos. 1–2, pp. 1377–1383.

    Article  Google Scholar 

  22. Yadagiri, M., Ramakrishna, S., Ravi, G., et al., Preparation, characterization and photocatalytic studies of Cr2(MoO4)3 and nitrogen-doped Cr2(MoO4)3, Chem. Chem. Technol., 2015, vol. 9, no. 4, pp. 391–399.https://doi.org/10.23939/chcht09.04.391

    Article  CAS  Google Scholar 

  23. Oudghiri-Hassani, H., Synthesis, characterization and application of chromium molybdate for oxidation of methylene blue dye, J. Mater. Environ. Sci., 2018, vol. 9, no. 3, pp. 1051–1057.

    CAS  Google Scholar 

  24. Forzatti, P., Mari, C.M., and Villa, P., Defect structure and transport properties of Cr2(MoO4)3 and Al2(MoO4)3, Mater. Res. Bull., 1987, vol. 22, no. 12, pp. 1593–1602.https://doi.org/10.1016/0025-5408(87)90001-8

    Article  CAS  Google Scholar 

  25. Tabero, P., Synthesis of Cr2(MoO4)3, React. Kinet. Catal. Lett., 1999, vol. 67, no. 1, pp. 137–141.https://doi.org/10.1007/bf02475839

    Article  CAS  Google Scholar 

  26. Cullity, B.D. and Stock, S.R., Elements of X-Ray Diffraction, Englewood Cliffs: Prentice-Hall, 2001, 3rd ed.

    Google Scholar 

  27. Kolosov, V.N. and Orlov, V.M., Electronically mediated reactions in metal thermal reduction of molybdenum and tungsten oxide compounds, Dokl. Phys. Chem., 2019, vol. 484, no. 2, pp. 28–31.https://doi.org/10.1134/S0012501619020027

    Article  CAS  Google Scholar 

  28. Kolosov, V.N., Orlov, V.M., and Miroshnichenko, M.N., Calcium vapor reduction of group V and VI metal oxide compounds, Inorg. Mater., 2020, vol. 56, no. 1, pp. 35–41.https://doi.org/10.1134/S0020168520010069

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kolosov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolosov, V.N., Miroshnichenko, M.N. & Prokhorova, T.Y. Magnesiothermic Preparation of Molybdenum–Chromium Alloy Powders. Inorg Mater 58, 33–39 (2022). https://doi.org/10.1134/S0020168522010071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522010071

Keywords:

Navigation