Skip to main content
Log in

Magnesiothermic Preparation of Chromium Powders

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the process underlying the preparation of chromium powders via the magnesium vapor reduction of the Cr2O3 and MgCr2O4 chromium oxide compounds in the temperature range from 700 to 800°C and residual argon pressures in the reactor from 5 to 20 kPa. The chromium powders obtained by reducing the MgCr2O4 chromite have a specific surface area at a level of 34 m2/g and are characterized by a mesoporous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Schatt, W. and Wieters, K.-P., Powder Metallurgy—Processing and Materials, Shrewsbury: European Powder Metallurgy Association, 1997.

    Google Scholar 

  2. Rudoy, A.P., Milman, Yu.V., and Korzhova, N.P., High-purity chromium targets, J. Phys. IV, 1995, vol. 5, no. C7, pp. 149–153.https://doi.org/10.1051/jp4:1995714

    Article  Google Scholar 

  3. Müller, M., Heimann, R.B., Gitzhofer, F., et al., Radio frequency plasma processing to produce chromium sputter targets, J. Therm. Spray. Tech., 2000, vol. 9, no. 4, pp. 488–493.https://doi.org/10.1007/BF02608551

    Article  Google Scholar 

  4. El Sayed, R., Massicano, A.V.F., Queern, S.L., et al., Manganese-52 production cross-section measurements via irradiation of natural chromium targets up to 20 MeV, Appl. Radiat. Isot., 2019, vol. 147, no. 5, pp. 165–170.

    Article  CAS  Google Scholar 

  5. Khrushchov, M.M., Marchenko, E.A., Levin, I.S., et al., Structure and functional properties of the coatings deposited by sputtering of targets based on chromium and detonation nanodiamonds, Russ. Metall. (Engl. Transl.), 2020, no. 7, pp. 786–791.

  6. Loubiere, S., Laurent, Ch., Bonino, J.P., and Rousset, A., Powders of chromium and chromium carbides of different morphology and narrow size distribution, Mater. Res. Bull., 1998, vol. 33, no. 6, pp. 935–944.

    Article  CAS  Google Scholar 

  7. Lyakishev, N.P. and Gasik, M.I., Metallurgiya khroma (Metallurgy of Chromium), Moscow: Eliz, 1999.

  8. Eggert, H., US Patent 4767454, 1988.

  9. Chen, G.Z., Gordo, E., and Fray, D.J., Direct electrolytic preparation of chromium powder, Metall. Mater. Trans. B, 2004, vol. 35, no. 4, pp. 223–233.

    Article  Google Scholar 

  10. Gordo, E., Chen, G.Z., and Fray, D.J., Toward optimization of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts, Electrochim. Acta, 2004, vol. 49, no. 13, pp. 2195–2208.

    Article  CAS  Google Scholar 

  11. Weng, W., Wang, M., and Gong, X., Direct electro-deposition of metallic chromium from K2CrO4 in the equimolar CaCl2–KCl molten salt and its reduction mechanism, Electrochim. Acta, 2016, vol. 212, no. 9, pp. 162–170.

    Article  CAS  Google Scholar 

  12. Abdul-Razzaq, W. and Seehra, M.S., Observation of oxidation and mechanical strain in Cr nanoparticles produced by ball-milling, Phys. Status Solidi A, 2002, vol. 193, no. 1, pp. 94–102. https://doi.org/10.1002/1521-396x(200209)193:1<94:: aid-pssa94>3.0.co;2-s

  13. Shaban, M., Hamdy, H., Shahin, F., and Ryu, S.-W., Fabrication of ordered Cr nanostructures by self agglomeration on porous anodic alumina membranes, J. Nanosci. Nanotechnol., 2011, vol. 11, no. 8, pp. 7145–7150. https://doi.org/10.1166/jnn.2011.4831

    Article  CAS  PubMed  Google Scholar 

  14. Tilley, R.D. and Jefferson, D.A., The preparation of chromium, nickel and chromium–nickel alloy nanoparticles on supports, J. Mater. Chem., 2002, vol. 12, no. 12, pp. 3809–3813.https://doi.org/10.1039/b204774h

    Article  CAS  Google Scholar 

  15. Chandra, S. and Kumar, A., Spectral, thermal and morphological studies of chromium nanoparticles, Spectrochim. Acta, Part A, 2013, vol. 102, no. 2, pp. 250–255.https://doi.org/10.1016/j.saa.2012.10.003

    Article  CAS  Google Scholar 

  16. Zhang, W.S., Bruck, E., Zhang, Z.D., et al., Structure and magnetic properties of Cr nanoparticles and Cr2O3 nanoparticles, Phys. B (Amsterdam, Neth.), 2005, vol. 538, nos. 1–4, pp. 332–338.https://doi.org/10.1016/j.physb.2005.01.469

  17. Zhang, K., Tenailleau, C., Alphonse, P., and Chane-Ching, J.-Y., Realization of aligned three-dimensional single-crystal chromium nanostructures by thermal evaporation, Spectrochim. Appl. Phys. A, 2010, vol. 100, no. 4, pp. 1049–1055.https://doi.org/10.1007/s00339-010-5905-8

    Article  CAS  Google Scholar 

  18. Son, S.U., Jang, Y., Yoon, K.Y., et al., Synthesis of monodisperse chromium nanoparticles from the thermolysis of a Fischer carbene complex, Chem. Commun., 2005, vol. 1, pp. 86–88.https://doi.org/10.1039/b411656a

    Article  CAS  Google Scholar 

  19. Ishibashi, H., Nakahigashi, K., and Tsunoda, Y., Neutron diffraction studies on Cr fine particles, J. Phys.: Condens. Matter, 1993, vol. 5, no. 33, pp. L415–L418.

    CAS  Google Scholar 

  20. Tsunoda, Y., Nakano, H., and Matsuo, S., Antiferromagnetism of Cr fine particles, J. Phys.: Condens. Matter, 1993, vol. 5, no. 3, pp. L29–L34.

    CAS  Google Scholar 

  21. Trenczek-Zajac, A., Radecka, M., Jasinski, M., et al., Influence of Cr on structural and optical properties of TiO2:Cr nanopowders prepared by flame spray synthesis, J. Power Sources, 2009, vol. 194, no. 1, pp. 104–111.

    Article  CAS  Google Scholar 

  22. Koda, T., Mitani, S., Mizuguchi, M., and Takanashi, K., Spin accumulation in Cr nanoparticles in single electron tunneling regime, IEEE Trans. Magn., 2010, vol. 46, no. 6, pp. 2060–2062.https://doi.org/10.1109/TMAG.2010.2044870

    Article  CAS  Google Scholar 

  23. Kolosov, V.N., Miroshnichenko, M.N., and Orlov, V.M., Influence of the chemical composition of precursors and reduction conditions on the properties of magnesiothermic tungsten powders, Inorg. Mater., 2016, vol. 52, no. 8, pp. 783–790.https://doi.org/10.1134/S0020168516080100

    Article  CAS  Google Scholar 

  24. Kolosov, V.N., Miroshnichenko, M.N., and Orlov, V.M., Influence of the composition of precursors and reduction conditions on the properties of magnesiothermic molybdenum powders, Inorg. Mater., 2017, vol. 53, no. 10, pp. 1058–1063.https://doi.org/10.1134/S0020168517100119

    Article  CAS  Google Scholar 

  25. Shekhter, L.N., Tripp, T.B., Lanin, L.L., et al., US Patent 7678175, 2010.

  26. Tablitsy fizicheskikh velichin (Tables of Physical Quantities), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.

    Google Scholar 

  27. Kazenas, E.K., Termodinamika ispareniya dvoinykh oksidov (Thermodynamics of Vaporization of Binary Oxides), Moscow: Nauka, 2004.

  28. Kazenas, E.K. and Tsvetkov, Yu.V., Termodinamika ispareniya oksidov (Thermodynamics of Vaporization of Oxides), Moscow: LKI, 2008.

  29. Kolosov, V.N. and Orlov, V.M., Electronically mediated reactions in metal thermal reduction of molybdenum and tungsten oxide compounds, Dokl. Phys. Chem., 2019, vol. 484, no. 2, pp. 28–31.https://doi.org/10.1134/S0012501619020027

    Article  CAS  Google Scholar 

  30. Kolosov, V.N., Orlov, V.M., and Miroshnichenko, M.N., Calcium vapor reduction of Group V and VI metal oxide compounds, Inorg. Mater., 2020, vol. 56, no. 1, pp. 35–41.https://doi.org/10.1134/S0020168520010069

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kolosov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolosov, V.N., Miroshnichenko, M.N. & Orlov, V.M. Magnesiothermic Preparation of Chromium Powders. Inorg Mater 57, 130–135 (2021). https://doi.org/10.1134/S0020168521010076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521010076

Keywords:

Navigation