Skip to main content
Log in

Al2O3-Based Ceramic Composites with a High Brittle Fracture Resistance

  • Published:
Inorganic Materials Aims and scope

Abstract

We examine synthesis conditions of precursors to ZrO2–Al2O3–CeO2 powders modified with calcium cations. The precipitation procedure and the aging of reaction systems of precursors to the synthesized composites are shown to influence the morphology and particle size of the nanopowders and the evolution of the phase composition, microstructure, and mechanical characteristics of composites prepared from them. The composites offer a high brittle fracture resistance due to the combined effect of transformation and dispersion hardening owing to the presence of T-ZrO2-based solid solutions and calcium hexaaluminates (bending strength, up to 1000 MPa; fracture toughness KIc, up to 10.5 MPa m1/2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Garshin, A.P., Gropyanov, V.M., Zaitsev, G.P., and Semenov, S.S., Keramika dlya mashinostroeniya (Ceramics for Machine Building), Moscow: Nauchtekhlittzdat, 2003.

  2. Bakunov, V.S., Belyakov, A.V., Lukin, E.S., and Shayakhmetov, U.Sh., Oksidnaya keramika: spekanie i polzuchest’ (Oxide Ceramics: Sintering and Creep), Moscow: Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2007.

  3. Piconi, C., Maccauro, G., and Muratori, F., Alumina matrix composites in arthroplasty, Key Eng. Mater., 2005, vols. 284–286, pp. 979–982.

    Article  Google Scholar 

  4. Barinov, S.M. and Shevchenko, V.Ya., Prochnost’ tekhnicheskoi keramiki (Strength of Engineering Ceramics)), Moscow: Nauka, 1996.

  5. Yang, G., Li, J., Wang, G., Yashima, M., and Min, S., Influences of ZrO2 nanoparticles on the microstructure and mechanical behavior of Ce-TZP/Al2O3 nanocomposites, J. Mater. Sci., 2005, vol. 40, no. 23, pp. 6087–6090.

    Article  CAS  Google Scholar 

  6. Podzorova, L.I., Il’icheva, A.A., and Pen’kova, O.I., Microstructure and strength of Al2O3–ZrO2–CeO2 ceramics, Ogneupory Tekh. Keram., 2005, no. 11, pp. 2–5.

  7. Burger, W. and Richter, H.G., High strength and toughness alumina matrix composites by transformation toughening and ‘in situ’ platelet reinforcement (ZPTA)—the new generation of bioceramics, Key Eng. Mater., 2001, vols. 192–195, pp. 545–548.

    Google Scholar 

  8. Savchenko, N.L., Korolev, P.V., Mel’nikov, A.G., Sablina, T.Yu., and Kul’kov, S.N., Structure and mechanical properties of sintered ZrO2–Y2O3–Al2O3 composites, Fundam. Probl. Sovrem. Materialoved., 2008, vol. 5, no. 1, pp. 4–9.

    Google Scholar 

  9. Prokhorov, I.Yu., Weibull distribution and size effect, Ogneupory Tekh. Keram., 2016, no. 10, pp. 6–9.

  10. Podzorova, L.I., Shvorneva, L.I., Il’icheva, A.A., et al., Microstructure and phase composition of ZrO2–CeO2–Al2O3 materials modified with MgO and Y2O3, Inorg. Mater., 2013, vol. 49, no. 4, pp. 376–381.

    Article  CAS  Google Scholar 

  11. Podzorova, L.I., Sirotinkin, V.P., Il’icheva, A.A., Pen’kova, O.I., Antonova, O.S., and Konovalov, A.A., Phase formation in Al2O3–ZrO2–CeO2 nanopowders modified with calcium cations, Inorg. Mater., 2018, vol. 54, no. 5, pp. 454–459.

    Article  CAS  Google Scholar 

  12. Podzorova, L.I., Il’icheva, A.A., Pen’kova, O.I., Alad’ev, N.A., Baikin, A.S., Konovalov, A.A., and Morokov, E.S., Dispersion hardening of Al2O3t-ZrO2 composites, Steklo Keram., 2017, no. 6, pp. 16–20.

  13. Vasserman, I.M., Khimicheskoe osazhdenie iz rastvorov (Chemical Deposition from Solutions), Leningrad: Khimiya, 1980.

  14. Lukin, E.S., Controlled-microstructure high-density advanced oxide ceramics: Part I. Effect of powder aggregation on the sintering and microstructure of ceramics, Ogneupory Tekh. Keram., 1996, no. 2, pp. 6–9.

  15. Yen, F.S., Lo, Y.S., Wen, H.L., and Yang, R.J., θ- to α‑phase transformation subsystem induced by α-Al2O3 in boehmite-derived nano-sized alumina powders, J. Cryst. Growth, 2003, no. 249, pp. 283–293.

  16. Yoshimura, M., Oh Sung-Tag, Sando, M., and Niihara, K., Crystallization and microstructural characterization of ZrO2 (3 mol. % Y2O3) nano-sized powder with Al2O3 contents, J. Alloys Compd., 1999, vol. 290, pp. 284–289.

    Article  CAS  Google Scholar 

  17. Podzorova, L.I., Il’icheva, A.A., Shvorneva, L.I., Kutsev, S.V., Mikhailina, N.A., and Pen’kova, O.I., Phase transformations in t-ZrO2–Al2O3 nanoprecursors and formation of the microstructure of related ceramic materials, Glass. Phys. Chem., 2007, vol. 33, no. 5, pp. 510–514.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Podzorova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podzorova, L.I., Il’icheva, A.A., Pen’kova, O.I. et al. Al2O3-Based Ceramic Composites with a High Brittle Fracture Resistance. Inorg Mater 55, 628–633 (2019). https://doi.org/10.1134/S0020168519060128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519060128

Keywords:

Navigation