Skip to main content
Log in

Phase Formation and Phase Transitions in Nonstoichiometric Sodium Bismuth Titanate Ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the phase formation, microstructure, and dielectric and ferroelectric properties of (Na0.5–xBi0.5)TiO3 and (Na0.5Bi0.5 + x)TiO3 nonstoichiometric ceramics with Na/Bi < 1 and x = 0–0.1. The grain size of the ceramics has been shown to decrease with increasing x. The temperature dependences of dielectric permittivity for the samples studied have anomalies near ~400 K and peaks at ~600 K, corresponding to ferroelectric phase transitions. The phase transitions near 400 K demonstrate relaxor behavior, indicative of the presence of polar regions in a nonpolar matrix, as supported by laser second harmonic generation measurements. In addition, the (Na0.5Bi0.5 + x)TiO3 samples with x > 0.05 have anomalies near 900 K, confirming the presence of Bi4Ti3O12 as an impurity phase, which is accompanied by an increase in the spontaneous polarization of these samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, S.J., Xia, R., and Shrout, R.T., Lead-free piezoelectric ceramics: alternatives for PZT?, J. Electroceram., 2007, vol. 19, pp. 251–257.

    Article  CAS  Google Scholar 

  2. Takenaka, T., Nagata, H., and Hiruma, Y., Current developments and prospective of lead-free piezoelectric ceramics, Jpn. J. Appl. Phys., 2008, vol. 47, pp. 3787–3801.

    Article  CAS  Google Scholar 

  3. Panda, P.K., Review: environmental friendly lead-free piezoelectric materials, J. Mater. Sci., 2009, vol. 44, pp. 5049–5062.

    Article  CAS  Google Scholar 

  4. Gupta, V., Sharma, M., and Thakur, N., Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review, J. Intell. Mater. Syst. Struct., 2010, vol. 21, pp. 1227–1243.

    Article  Google Scholar 

  5. Rödel, J., Webber, K.G., Dittmer, R., Wook, Jo., Kimura, M., and Damjanovic, D., Transferring leadfree piezoelectric ceramics into application, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1659–1681.

    Article  CAS  Google Scholar 

  6. Smolenskii, G.A., Isupov, V.A., Agranovskaya, A.I., and Krainik, N.N., New ferroelectrics of complex composition, Fiz. Tverd. Tela (Leningrad), 1961, vol. 2, 2651–2654.

    Google Scholar 

  7. Vakhrushev, S.B., Isupov, V.A., Kvyatkovsky, B.E., Okuneva, N.M., Pronin, I.P., Smolensky, G.A., and Syrnikov, P.P., Phase transitions and soft modes in sodium bismuth titanate, Ferroelectrics, 1985, vol. 63, pp. 153–160.

    Article  CAS  Google Scholar 

  8. Jones, G.O. and Thomas, P.A., Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3, Acta Crystallogr., Sect. B: Struct. Sci., 2002, vol. 58, pp. 168–178.

    Article  CAS  Google Scholar 

  9. Dorcet, V., Trolliard, G., and Boullay, P., Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: first order rhombohedral to orthorhombic phase transition, Chem. Mater., 2008, vol. 20, pp. 5061–5073.

    Article  CAS  Google Scholar 

  10. Xiaoli Tan, Cheng Ma, Frederick, J., Beckman, S., and Webber, K.G., The antiferroelectric–ferroelectric phase transition in lead-containing and lead-free perovskite ceramics, J. Am. Ceram. Soc., 2011, vol. 94, pp. 4091–4107.

    Google Scholar 

  11. Sung, Y.S., Kim, J.M., Cho, J.H., Song, T.K., Kim, M.N., Chong, H.H., Park, T.G., Do, D., and Kim, S.S., Effects of Na nonstoichiometry in Bi0.5Na0.5 + xTiO3 ceramics, Appl. Phys. Lett., 2010, vol. 96, paper 022 901.

  12. Li Ming, Zhang, H., Cook, S.N., Li Linhao, Kilner, J.A., Reaney, J.M., and Sinclair, D.C., The dramatic influence of A-site non-stoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3, Chem. Mater., 2015, vol. 27, pp. 629–634.

    CAS  Google Scholar 

  13. Shvartsman, V.V. and Lupascu, D.C., Lead-free relaxor ferroelectrics, J. Am. Ceram. Soc., 2012, vol. 95, pp. 1–26.

    Article  CAS  Google Scholar 

  14. Kleemann, W., Random-field induced antiferromagnetic, ferroelectric and structural domain states, Int. J. Mod. Phys. B, 1993, vol. 7, pp. 2469–2507.

    Article  CAS  Google Scholar 

  15. Politova, E.D., Golubko, N.V., Kaleva, G.M., Mosunov, A.V., Sadovskaya, N.V., Bel’kova, D.A., and Stefanovich, S.Yu., Structure and dielectric properties of sodium bismuth titanate-based ceramics, Materialy XIV mezhdunarodnoi konferentsii “Fizika dielektrikov” (Dielektriki-2017) (Proc. XIV Int. Conf. Physics of Dielectrics: Dielectrics-2017), St. Petersburg, 2017, pp. 354–356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Politova.

Additional information

Original Russian Text © E.D. Politova, A.V. Mosunov, D.A. Strebkov, N.V. Golubko, G.M. Kaleva, B.A. Loginov, A.B. Loginov, S.Yu. Stefanovich, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 7, pp. 784–788.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politova, E.D., Mosunov, A.V., Strebkov, D.A. et al. Phase Formation and Phase Transitions in Nonstoichiometric Sodium Bismuth Titanate Ceramics. Inorg Mater 54, 744–748 (2018). https://doi.org/10.1134/S0020168518070154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518070154

Keywords

Navigation