Skip to main content
Log in

Relaxor behavior in the Perovskitex-type Bi0.5(Na1-xLix)0.5TiO3 (0≤x≥0.2) solid solution

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In the search of lead – free ferroelectric ceramics with improved properties, bismuth sodium titanate Na0.5Bi0.5TiO3 (NBT) was thoroughly investigated in our group. Solid solutions of the perovskite-type compounds, with Bi0.5(Na1-xLix)0.5TiO3, formula, were prepared by solid state reaction. The results of X-ray diffraction (XRD) data evidenced for a single perovskite phase, with a solubility limit of (Na,Li) estimated to x ≈ 0.2. The dielectric properties of sintered ceramics were investigated in wide temperature (25–800°C) and frequency (1kHz-1MHz) ranges. For low substitution rate, (0 ≤ x ≤ 0.2) the compounds exhibit diffuse phase transition and are characterised by high Curie temperature and a relaxor – like behavior. In the high temperature range, the thermal variation of permittivity is well described by a law \( \frac{1}{\varepsilon }-\frac{1}{\varepsilon_m}=C{\left(T-{T}_m\right)}^{\gamma } \), where γ is close to 1.5. Such a relaxor behavior is interpreted in terms of cation disorder, due to the statistical repartition of Na and Li, or correlated to the relaxation of polar clusters induced by the Na substitution by Li in the A site of the perovskite unit cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Wu, C. Yang, Cryst. Eng. Comm. 15, 9097 (2013)

    Article  Google Scholar 

  2. Y. Li, R. Liao, X. Jiang, Y. Zhang, J. Alloys Compd. 484, 961 (2009)

    Article  Google Scholar 

  3. G.O. Jones, P.A. Thomas, Acta Crys. B58, 168 (2002)

    Article  Google Scholar 

  4. G.A. Smolenskii, V.A. Isupov, A.I. Agranoskaya, N.N. Krainik, Sov. Phys. Solid State. 2, 2651 (1961)

    Google Scholar 

  5. S.B. Vakhrushev, V.A. Isupov, B.E. Kvyatovsky, N.M. Okuneva, I.P. Pronin, Ferroelectrics 63, 153 (1985)

    Article  Google Scholar 

  6. J.A. Zvirgzds, P.P. Kapostins, J.V. Zvirgzde, Ferroelectrics 40, 75 (1982)

    Article  Google Scholar 

  7. M. Gröting, S. Hayn, K. Albe, J. Solid State Chem. 184, 2041 (2011)

    Article  Google Scholar 

  8. J. Suchanicz, J. Kawpulinski, Ferroelectrics 165, 249 (1995)

    Article  Google Scholar 

  9. J.R. Gomah-Pettry, S. Said, P. Marchet, J.P. Mercurio, J. Eur. Ceram. Soc. 24, 1165 (2004)

    Article  Google Scholar 

  10. S. S. Sundari, B. Kumar, R. Dhanasekaran, IOP Conf. Series : Materials Science and Engineering, 43, (2013)

  11. W. Lu, Y. Wang, G. Fan, X. Wang, F. Liang, J. Alloys Compd. 509, 2738 (2011)

    Article  Google Scholar 

  12. S. Said, J.P. Mercurio, J. Eur. Ceram. Soc 21, 1333 (2001)

    Article  Google Scholar 

  13. W.Z. Lu, G.F. Fan, X.H. Wang, F. Liang, Jpn. J. Appl. Phys. 450(11), 8763 (2006)

    Article  Google Scholar 

  14. F. Gao, C.S. Zhang, X.C. Liu, L.H. Cheng et al., J. Eur. Ceram. Soc. 27, 3453 (2007)

    Article  Google Scholar 

  15. M. Rawat, K.L. Yadav, Materials Chemistry and Physics,in press (2014)

  16. J. Pozingis, J. Macutkevic, R. Grigalaitis, J. Banys, D.C. Lupascu, Ceram. Int. 40, 9961 (2014)

    Article  Google Scholar 

  17. H.Y. Ma, X.M. Chen, J. Wang, K.T. Huo, H.L. Lian, P. Liu, Ceram. Int. 39, 3721 (2013)

    Article  Google Scholar 

  18. D.M. Lin, L. Li, Mater. Lett. 58, 1333 (2004)

    Google Scholar 

  19. B. Ming, J. Wang, G. Zhang, Chin. Phys. Lett. 25(10), 3776 (2008)

    Article  Google Scholar 

  20. R.D. Shannon, Acta Crystallogr. A32, 752 (1976)

    Google Scholar 

  21. K. Sakata, Y. Masuda, Ferroelectrics 7, 347 (1974)

    Article  Google Scholar 

  22. T. Takenaka, K.I. Maruyama, K. Sakata, Japanese J. Appl; Phys. 20(9B), 2236 (1991)

    Article  Google Scholar 

  23. Yuhuan Xu, Ferroelectric materials and their applications (North-Holland, 1991), chap.1

  24. X. Yi, H. Chen, X. Cao, M. Zhao, D. Yang, G. Ma, C. Yang, J. Han, J. Cryst. Growth. 281, 364 (2005)

    Article  Google Scholar 

  25. K. Uchino, S. Nomura, Ferroelectr. Lett. 44, 55 (1982)

    Article  Google Scholar 

  26. S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, J. Am. Ceram. Soc. 73, 3122 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senda Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, S., El Maaoui, M. Relaxor behavior in the Perovskitex-type Bi0.5(Na1-xLix)0.5TiO3 (0≤x≥0.2) solid solution. J Electroceram 35, 90–97 (2015). https://doi.org/10.1007/s10832-015-9996-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-015-9996-7

Keywords

Navigation