Skip to main content
Log in

Electrochemical properties of Li4Ti5O12/C and Li4Ti5O12/C/Ag nanomaterials

  • Published:
Inorganic Materials Aims and scope

Abstract

We have prepared and characterized lithium titanate-based anode materials, Li4Ti5O12/C and Li4Ti5O12/C/Ag, using polyvinylidene fluoride as a carbon source. The formation of such materials has been shown to be accompanied by fluorination of the lithium titanate surface and the formation of a highly conductive carbon coating. The highest electrochemical capacity (175 mAh/g at a current density of 20 mA/g) is offered by the Li4Ti5O12-based anode materials prepared using 5% polyvinylidene fluoride. The addition of silver nanoparticles ensures a further increase in electrical conductivity and better cycling stability of the materials at high current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, M.V., Subba Rao, G.V., and Chowdari, B.V., Metal oxides and oxysalts as anode materials for Li ion batteries, Chem. Rev., 2013, vol. 113, pp. 5364–5457.

    Article  CAS  Google Scholar 

  2. Yi, T., Jiang, L., Shu, J., Yue, C., Zhu, R., and Qiao, H., Recent development and application of Li4Ti5O12 as anode material of lithium ion battery, J. Phys. Chem. Solids, 2010, vol. 71, pp. 1236–1242.

    Article  CAS  Google Scholar 

  3. Zhao, B., Ran, R., Liu, M., and Shao, Z., A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives, Mater. Sci. Eng., 2015, vol. R98, pp. 1–71.

    Google Scholar 

  4. Wilkening, M., Amade, R., Iwaniak, W., and Heitjans, P., Ultraslow Li diffusion in spinel-type structured Li4Ti5O12—a comparison of results from solid state NMR and impedance spectroscopy, Phys. Chem. Chem. Phys., 2007, vol. 9, pp. 1239–1246.

    Article  CAS  Google Scholar 

  5. Ge, H., Chen, L., Yuan, W., Zhang, Y., Fan, Q., Osgood, H., Matera, D., Song, X.-M., and Wu, G., Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries, J. Power Sources, 2015, vol. 297, pp. 436–441.

    Article  CAS  Google Scholar 

  6. Mu, D., Chen, Y., Wu, B., Huang, R., Jiang, Y., Li, L., and Wu, F., Nano-sized Li4Ti5O12/C anode material with ultrafast charge/discharge capability for lithium ion batteries, J. Alloys Compd., 2016, vol. 671, pp. 157–163.

    Article  CAS  Google Scholar 

  7. Liu, G., Zhang, R., Bao, K., Xie, H., Zheng, S., Guo, J., and Liu, G., Synthesis of nano-Li4Ti5O12 anode material for lithium ion batteries by a biphasic interfacial reaction route, Ceram. Int., 2016, vol. 42, pp. 11468–11472.

    Article  CAS  Google Scholar 

  8. Kashkooli, A.G., Lui, G., Farhad, S., Lee, D.U., Feng, K., Yu, A., and Chen, Z., Nano-particle size effect on the performance of Li4Ti5O12 spinel, Electrochim. Acta, 2016, vol. 196, pp. 33–40.

    Article  CAS  Google Scholar 

  9. Park, J.S., Baek, S.-H., Jeong, Y.-I., Noh, B.-Y., and Kim, J.H., Effects of a dopant on the electrochemical properties of Li4Ti5O12 as a lithium-ion battery anode material, J. Power Sources, 2013, vol. 244, pp. 527–531.

    Article  CAS  Google Scholar 

  10. Wolfenstine, J. and Allen, J.L., Electrical conductivity and charge compensation in Ta doped Li4Ti5O12, J. Power Sources, 2008, vol. 180, pp. 582–585.

    Article  CAS  Google Scholar 

  11. Chen, C.H., Vaughey, J.T., Jansen, A.N., Dees, D.W., Kahaian, A.J., Goacher, T., and Thackeray, M.M., Studies of Mg-substituted Li4–xMgxTi5O12 spinel electrodes (0 ≤ x ≤ 1) for lithium batteries, J. Electrochem. Soc., 2001, vol. 148, pp. A102–A104.

    Article  CAS  Google Scholar 

  12. Song, H., Yun, S.-W., Chun, H.-H., Kim, M.-G., Chung, K.Y., Kim, H.S., Cho, B.-W., and Kim, Y.-T., Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negativeelectrode materials for high-rate Li-ion batteries, Energy Environ. Sci., 2012, vol. 5, pp. 9903–9913.

    Article  CAS  Google Scholar 

  13. Lin, C., Lai, M.O., Lu, L., Zhou, H., and Xin, Y., Structure and high rate performance of Ni2+ doped Li4Ti5O12 for lithium ion battery, J. Power Sources, 2013, vol. 244, pp. 272–279.

    Article  CAS  Google Scholar 

  14. Li, H. and Zhou, H., Enhancing the performances of Li-ion batteries by carbon-coating, Present Future Chem. Commun., 2012, vol. 48, pp. 1201–1217.

    CAS  Google Scholar 

  15. Su, X., Huang, T., Wang, Y., and Yu, A., Synthesis and electrochemical performance of nano-sized Li4Ti5O12 coated with boron-doped carbon, Electrochim. Acta, 2016, vol. 196, pp. 300–308.

    Article  CAS  Google Scholar 

  16. Ren, Y., Lu, P., Huang, X., Zhou, S., Chen, Y., Liu, B., Chu, F., and Ding, J., In-situ synthesis of nano-Li4Ti5O12/C composite as an anode material for Li-ion batteries, Solid State Ionics, 2015, vol. 274, pp. 83–87.

    Article  CAS  Google Scholar 

  17. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, pp. 826–852.

    Article  CAS  Google Scholar 

  18. Ni, H., Song, W.-L., and Fan, L.-Z., A strategy for scalable synthesis of Li4Ti5O12/reduced graphene oxide toward high rate lithium-ion batteries, Electrochem. Commun., 2014, vol. 40, pp. 1–4.

    Article  CAS  Google Scholar 

  19. Li, X., Qu, M., Huai, Y., and Yu, Z., Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery, Electrochim. Acta, 2010, vol. 55, pp. 2978–2982.

    Article  CAS  Google Scholar 

  20. Yang, S., Miao, J., Wang, Q., Lu, M., Sun, J., and Wen, T., Synthesis of graphitized carbon, nanodiamond and graphene supported Li4Ti5O12 and comparison of their electrochemical performance as anodes for lithium ion batteries, Appl. Surf. Sci., 2016, vol. 389, pp. 428–437.

    Article  CAS  Google Scholar 

  21. Yu, Z., Wang, L., and Jiang, L., Design and synthesis of N-doped graphene sheets loaded with Li4Ti5O12 nanocrystals as advanced anode material for Li-ion batteries, Ceram. Int., 2016, vol. 42, pp. 16031–16039.

    Article  CAS  Google Scholar 

  22. Fang, W., Cheng, X., Zuo, P., Ma, Y., and Yin, G., A facile strategy to prepare nano-crystalline Li4Ti5O12/C anode material via polyvinyl alcohol as carbon source for high-rate rechargeable Li-ion batteries, Electrochim. Acta, 2013, vol. 93, pp. 173–178.

    Article  CAS  Google Scholar 

  23. Li, T., Shao, L., Lin, X., Shui, M., Wu, K., Wang, D., Long, N., Ren, Y., and Shu, J., High rate Li4Ti5O12/C anode material fabricated by a facile carbon coating method, J. Electroanal. Chem., 2014, vols. 722–723, pp. 54–59.

    Article  Google Scholar 

  24. Lin, Z., Zhu, W., Wang, Z., Yang, Y., Lin, Y., and Huang, Z., Synthesis of carbon-coated Li4Ti5O12 nanosheets as anode materials for high-performance lithium-ion batteries, J. Alloys Compd., 2016, vol. 687, pp. 232–239.

    Article  CAS  Google Scholar 

  25. Li, F., Chen, P., Wu, H., and Zhang, Y., Cooperative enhancement of electrochemical properties in double carbon-decorated Li4Ti5O12/C composite as anode for Li-ion batteries, J. Alloys Compd., 2015, vol. 633, pp. 443–447.

    Article  CAS  Google Scholar 

  26. Nakajima, T., Gupta, V., Ohzawa, Y., Koh, M., Singh, R.N., Tressaud, A., and Durand, E., Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries, J. Power Sources, 2002, vol. 104, pp. 108–114.

    Article  CAS  Google Scholar 

  27. Zhao, Z., Xu, Y., Ji, M., and Zhang, H., Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries, Electrochim. Acta, 2013, vol. 109, pp. 645–650.

    Article  CAS  Google Scholar 

  28. Han, X., Zhao, Z., Xu, Y., Liu, D., Zhang, H., and Zhao, C., Synthesis and characterization of F-doped nanocrystalline Li4Ti5O12/C compounds for lithiumion batteries, RSC Advances, 2014, vol. 4, pp. 41968–41975.

    Article  CAS  Google Scholar 

  29. Gryzlov, D., Novikova, S., Kulova, T., Skundin, A., and Yaroslavtsev, A., Behavior of LiFePO4/CPVDF/Agbased cathode materials obtained using polyvinylidene fluoride as the carbon source, Mater. Design, 2016, vol. 104, pp. 95–101.

    Article  CAS  Google Scholar 

  30. Wang, W., Guo, Y., Liu, L., Wang, S., Yang, X., and Guo, H., Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries, J. Power Sources, 2014, vol. 245, pp. 624–629.

    Article  CAS  Google Scholar 

  31. Zeng, T., Hu, T., Ji, T., Peng, T., Shang, T., and Gong, S., General synthesis of nano-M embedded Li4Ti5O12/C composites (M = Sn, Sb and Bi) with high capacity and good cycle stability, Electrochim. Acta, 2016, vol. 217, pp. 299–309.

    Article  CAS  Google Scholar 

  32. Krajewski, M., Hamankiewicz, B., and Czerwiński, A., Voltammetric and impedance characterization of Li4Ti5O12/n-Ag composite for lithium-ion batteries, Electrochim. Acta, 2016, vol. 219, pp. 277–283.

    Article  CAS  Google Scholar 

  33. Erdas, A., Ozcan, S., Nalci, D., Guler, M.O., and Novel, H.A., Ag/Li4Ti5O12 binary composite anode electrodes for high capacity Li-ion batteries, Surf. Coatings Technol., 2015, vol. 271, pp. 136–140.

    Article  CAS  Google Scholar 

  34. Liu, Z., Zhang, N., Wang, Z., and Sun, K., Highly dispersed Ag nanoparticles (<10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery, J. Power Sources, 2012, vol. 205, pp. 479–482.

    Article  CAS  Google Scholar 

  35. Stenina, I.A., Il’in, A.B., and Yaroslavtsev, A.B., Synthesis and ionic conductivity of Li4Ti5O12, Inorg. Mater., 2015, vol. 51, no. 1, pp. 62–67.

    Article  CAS  Google Scholar 

  36. Baddour-Hadjean, R. and Pereira-Ramos, J.-P., Raman microspectrometry applied to the study of electrode materials for lithium batteries, Chem. Rev., 2010, vol. 110, pp. 1278–1319.

    Article  CAS  Google Scholar 

  37. Doeff, M.M., Wilcox, J.D., Kostecki, R., and Lau, G., Optimization of carbon coatings on LiFePO4, J. Power Sources, 2006, vol. 163, pp. 180–184.

    Article  CAS  Google Scholar 

  38. Stenina, I.A., Bukalov, S.S., Kulova, T.L., Skundin, A.M., Tabachkova, N.Yu., and Yaroslavtsev, A.B., Influence of a carbon coating on the electrochemical properties of lithium-titanate-based nanosized materials, Nanotechnol. Russ., 2015, vol. 10, nos. 11–12, pp. 865–871.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Additional information

Original Russian Text © I.A. Stenina, A.N. Sobolev, A.A. Kuz’mina, T.L. Kulova, A.M. Skundin, N.Yu. Tabachkova, A.B. Yaroslavtsev, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 10, pp. 1063–1069.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Sobolev, A.N., Kuz’mina, A.A. et al. Electrochemical properties of Li4Ti5O12/C and Li4Ti5O12/C/Ag nanomaterials. Inorg Mater 53, 1039–1045 (2017). https://doi.org/10.1134/S0020168517100144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517100144

Keywords

Navigation