Skip to main content
Log in

Synthesis and luminescence spectra of (Y2O3–YOF):Ln(III) composites

  • Published:
Inorganic Materials Aims and scope

Abstract

Sols were prepared by reacting yttrium, europium, and terbium trifluoroacetates with thioacetamide in ethyl acetate. The Eu3+ and Tb3+ concentrations in the sols were 0.10 to 10 wt % relative to yttrium, which corresponded to 0.061 (0.059) to 6.1 (5.9) at % Eu (Tb). The sols were converted into a gel-like state by slowly evaporating the solvent. After ripening, the gels were heat-treated at a temperature of 800°C. X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and IR spectroscopy results showed that the resultant composites consisted predominantly of a mixture of Y2O3 and YOF. The Eu3+ and Tb3+ ions were shown to substitute for Y3+ ions in the crystal lattices of the yttrium oxide and yttrium oxyfluoride. The formation of the (Eu0.6Y0.4)2O3, Eu2O3, and EuOF phases was demonstrated. We determined the types and parameters of the crystal lattices of the synthesized materials in relation to activator concentrations. The luminescence of the composites is due to the 5 D 07 F j and 5 D 47 F j electronic transitions of the Eu3+ and Tb3+ ions and depends on the host and activator compositions, the excitation wavelength, and other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanomaterials: Synthesis, Properties and Applications, Edelstein, A.S. and Cammarata, R.C., Eds., London: Taylor & Francis, 1998.

  2. Chong, M.K., Pita, K., and Kam, C.H., Photoluminescence of Y2O3:Er3+ thin film phosphors by sol–gel deposition and rapid thermal annealing, J. Phys. Chem. Solids, 2005, vol. 66, no. 1, pp. 213–217.

    Article  CAS  Google Scholar 

  3. Jun Yeol Cho, Ki-Young Ko, and Young Rag Do, Optical properties of sol–gel derived Y2O3:Er3+ thin-film phosphors for display, Thin Solid Films, 2007, vol. 515, nos. 7–8, pp. 3373–3379.

    Google Scholar 

  4. Anh, T.K., Benalloul, P., Barthou, C., et. al., Luminescence, energy transfer, and upconversion mechanisms of Y2O3 nanomaterials doped with Eu3+, Tb3+, Tm3+, Er3+, and Yb3+ ions, J. Nanomater., 2007, vol. 2007, paper 48 247.

    Google Scholar 

  5. Romo, F.C., Murillo, A.G., Torres, D.L., et al., Structural and luminescence characterization of silica coated Y2O3:Eu3+ nanopowders, Opt. Mater., 2010, vol. 22, no. 11, pp. 1471–1479.

    Article  Google Scholar 

  6. Gowd, G.S., Patra, M.K., Songara, S., et al., Effect of doping concentration and annealing temperature on luminescence properties of Y2O3:Er3+ nanophosphor prepared by colloidal precipitation method, J. Lumin., 2012, vol. 132, no. 8, pp. 2023–2029.

    Article  Google Scholar 

  7. Sudeshna Ray, Sergio Fabian Leon-Luis, Francisco Javier Manjon, et al., Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Er3+ phosphors synthesized by a complex based precursor solution method, Curr. Appl. Phys., 2014, vol. 14, no. 1, pp. 72–81.

    Article  Google Scholar 

  8. Gruzintsev, A.N., Ermolaeva, Yu.V., Matveevskaya, N.A., et al., Size-dependent luminescence of spherical Y2O3:Er nanoparticles, Inorg. Mater., 2014, vol. 50, no. 11, pp. 1099–1103.

    Article  CAS  Google Scholar 

  9. Anh, T.K., Ngoc, T., Nga, P.T., et al., Energy transfer between Tb3+ and Er3+ in Y2O3 crystals, J. Lumin., 1988, vol. 39, no. 4, pp. 215–221.

    Article  Google Scholar 

  10. Blasse, G. and Grabmaier, B.C., Luminescent Materials, Berlin: Springer, 1994.

    Book  Google Scholar 

  11. Garskaite, E., Lindgren, M., Einarsrud, M.-A., and Grande, T., Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesised by an aqueous sol–gel technique, J. Eur. Ceram. Soc., 2010, vol. 30, no. 7, pp. 1707–1715.

    Article  CAS  Google Scholar 

  12. Manashirov, O.Ya., Zvereva, E.M., and Vorob’ev, V.A., A comparative study of various classes of Yb3+-activated phosphors under IR excitation, Vestn. Yuzhnogo Nauchn. Tsentra Ross. Akad. Nauk, 2012, vol. 8, no. 4, pp. 38–49.

    Google Scholar 

  13. Kottaisamy, M., Jeyakumar, D., Jagannathan, R., and Rao, M.M., Yttrium oxide:Er3+ red phosphor by selfpropagating high temperature synthesis, Mater. Res. Bull., 1996, vol. 31, no. 8, pp. 1013–1020.

    Article  CAS  Google Scholar 

  14. Chavan, S.V., Combustion synthesis of nanocrystalline yttria: tailoring of powder properties, Mater. Sci. Eng., B, 2006, vol. 132, pp. 266–271.

    Article  CAS  Google Scholar 

  15. Mangalaraja, R.V., Combustion synthesis of Y2O3 and Yb–Y2O3: part I. Nanopowders and their characterization, J. Mater. Process Technol., 2008, vol. 208, pp. 415–422.

    Article  CAS  Google Scholar 

  16. Balabanov, S.S., Gavrishchuk, E.M., Drobotenko, V.V., and Permin, D.A., Preparation of yttrium oxide nanopowders by self-propagating high-temperature synthesis, Vestn. Nizhegorodsk. Univ. im. N. I. Lobachevskogo, 2011, no. 2(1), pp. 91–97.

    Google Scholar 

  17. Permin, D.A., Preparation of extrapure yttrium oxide nanopowders by self-propagating high-temperature synthesis, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Nizhny Novgorod: Devyatykh Inst. of Chemistry of High-Purity Substances, Russ. Acad. Sci., 2011.

    Google Scholar 

  18. Konrad, A., Fries, T., Gahn, A., et al., Chemical vapor synthesis and luminescence properties of nanocrystalline cubic Y2O3:Eu, J. Appl. Phys., 1999, vol. 86, no. 6, pp. 3129–3133.

    Article  CAS  Google Scholar 

  19. Capobianco, J.A., Vetron, F., D’Alesio, T., et al., Optical spectroscopy of nanocrystalline cubic Y2O3:Er3+ obtained via combustion synthesis, Phys. Chem. Chem. Phys., 2000, vol. 2, pp. 3203–3207.

    Article  CAS  Google Scholar 

  20. Hong, G.Y., Jeon, B.S., Yoo, Y.K., and Yoo, J.S., Photoluminescence characteristics of spherical Y2O3:Eu phosphors by aerosol pyrolysis, J. Electrochem. Soc., 2001, vol. 148, no. 11, pp. H161–H166.

    Google Scholar 

  21. Zhang, J., Zhang, Z., Tang, Z., et al., Luminescent properties of Y2O3:Eu synthesized by sol–gel processing, J. Mater. Process. Technol., 2002, vol. 121, nos. 2–3, pp. 265–268.

    CAS  Google Scholar 

  22. Ivanov, M.G., Kopylov, Yu.L., Kravchenko, V.B., et al., YAG and Y2O3 laser ceramics from nonagglomerated nanopowders, Inorg. Mater., 2014, vol. 50, no. 9, pp. 951–959.

    Article  CAS  Google Scholar 

  23. Feldmann, C., Polyol-mediated synthesis of nanoscale functional materials, Adv. Funct. Mater., 2003, vol. 13, no. 2, pp. 101–107.

    Article  CAS  Google Scholar 

  24. Val’nin, G.P., Optically transparent yttrium(III) oxidebased ceramics prepared via alkoxy route, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: State Scientific-Research Inst. of Chemical Reagents and High Purity Chemical Substances, 2008.

    Google Scholar 

  25. Ryabochkina, P.A., Intensities of ultrasensitive transitions of rare-earth ions in oxide laser crystals, Doctoral (Phys.–Math.) Dissertation, Saransk: Mordovskii Gos. Univ., 2012.

    Google Scholar 

  26. Ermakov, R.P., Evolution of an ensemble of yttria nanoparticles in crystal formation processes, Cand. Sci. (Phys.–Math.) Dissertation, Moscow: Prokhorov General Physics Inst., Russ. Acad. Sci., 2014.

    Google Scholar 

  27. Ukleina, I.Yu., Synthesis, luminescence, and optical properties of yttrium and rare-earth oxyfluorides, Cand. Sci. (Chem.) Dissertation, Stavropol: Stavropol State Univ., 2005.

    Google Scholar 

  28. Rakov, N., Guimaraes, R.B., Lozano, W.B., and Maciel, G.S., Structural and spectroscopic analyses of europium doped yttrium oxyfluoride powders prepared by combustion synthesis, J. Appl. Phys., 2013, vol. 114, no. 4, paper 043 517.

    Google Scholar 

  29. Wen, T., Luo, W., Wang, Y., et al., Multicolour and upconversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluoride nanocrystals, J. Mater. Chem. C, 2013, no. 1, pp. 1995–2001.

    Article  CAS  Google Scholar 

  30. Rakov, N. and Maciel, G.S., Comparative study of Er3+ and Tm3+ co-doped YOF and Y2O3 powders as red spectrally pure upconverters, Opt. Mater., 2013, no. 35, pp. 2372–2375.

    Article  CAS  Google Scholar 

  31. Zhihua Li, Longzhen Zheng, Luning Zhang, and Leyan Xiong, Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3–YOF–Y2O3 system, J. Lumin., 2007, vol. 126, no. 2, pp. 481–486.

    Article  Google Scholar 

  32. Gotovtseva, E.Yu., Biryukov, A.A., and Svetlichnyi, V.A., Stability and luminescence spectra of dispersions of CdS and ZnS nanoparticles synthesized in various solvents, Izv. Vyssh. Uchebn. Zaved., Fiz., 2013, vol. 56, no. 3, pp. 32–37.

    Google Scholar 

  33. Smagin, V.P., Davydov, D.A., and Unzhakova, N.M., RF Patent 2 561 287, Byull. Izobret., 2015, no. 24.

    Google Scholar 

  34. Smagin, V.P., Davydov, D.A., Unzhakova, N.M., and Biryukov, A.A., Synthesis and spectral properties of colloidal solutions of metal sulfides, Russ. J. Inorg. Chem., 2015, vol. 60, no. 12, pp. 1588–1594.

    Article  CAS  Google Scholar 

  35. Smagin, V.P. and Mokrousov, G.M., Physicochemical Aspects of the Formation and Properties of Optically Transparent Metal-Containing Polymer Materials, Barnaul: Altaisk. Univ., 2014. http://elibrary.asu.ru/xmlui/bitstream/handle/asu/840/read.7book?sequence=1.

    Google Scholar 

  36. SDBS Spectral Database for Organic Compounds. http://riodb01.ibase.aist.go.jp/sdbs/cg … me_top.cgi.

  37. Larionov, S.V., Kirichenko, V.N., Rastorguev, A.A., Belyi, V.I., et al., Perfluorinated europium(III) carboxylates: synthesis and properties, Russ. J. Coord. Chem., 1997, vol. 23, no. 6, pp. 432–438.

    CAS  Google Scholar 

  38. Rastorguev, A.A., Remova, A.A., Romanenko, G.V., et al., Dimeric structure of Tb(CF3COO)3 · 3H2O and its detailed electronic structure according to luminescence analysis data, Zh. Strukt. Khim., 2001, vol. 42, no. 5, pp. 907–916.

    Google Scholar 

  39. Belyi, V.I., Rastorguev, A.A., Remova, A.A., et al., Isomerism of the terbium(III) trifluoroacetate trihydrate dimer, Zh. Strukt. Khim., 2002, vol. 43, no. 4, pp. 634–641.

    Google Scholar 

  40. Belyi, V.I., Kozlova, S.G., Rastorguev, A.A., et al., Signatures of OH groups and H2O in 1H NMR and luminescence spectra of rare-earth trifluoroacetate trihydrates, Issled. Ross., 2001, pp. 447–455. http://zhurnal. ape.relarn.ru/articles/2001/040.pdf.

    Google Scholar 

  41. Romanenko, G.V., Sokolova, N.P., and Larionov, S.V., Molecular and crystal structures of dysprosium(III) trifluoroacetate trihydrate, Zh. Strukt. Khim., 1999, vol. 40, no. 2, pp. 387–392.

    Google Scholar 

  42. Smagin, V.P., Physicochemical principles underlying the preparation of optically transparent metal-containing polymer materials, Doctoral (Chem) Dissertation, Tomsk: Tomsk. Gos. Univ., 2013.

    Google Scholar 

  43. Levin, I., Huang, Q.Z., Cook, L.P., and Wong-Ng, W., Nonquenchable chemical order_disorder phase transition in yttrium oxyfluoride, Eur. J. Inorg. Chem., 2005, no. 1, pp. 87–91.

    Article  Google Scholar 

  44. Belobeletskaya, M.V., Steblevskaya, N.I., and Medkov, M.A., Red and green phosphors based on rareearth oxides, oxysulfides, and phosphates, Vestn. Dal’nevostochnogo Otd. Ross. Akad. Nauk, 2013, no. 5(171), pp. 33–38.

    Google Scholar 

  45. Dorenbos, P., Systematic behaviour in trivalent lanthanide charge transfer energies, J. Phys.: Condens. Matter, 2003, vol. 15, no. 49, pp. 8417–8434.

    CAS  Google Scholar 

  46. Xiang Liu, Jiang Zhu, Haitao Ni, Bing Ma, and Li Liu, Luminescent properties of a polymer photoluminescent composite containing the binuclear (Eu, Tb) complex as an emitter, J. Macromol. Sci., Phys., 2016, vol. 55, no. 1, pp. 20–32.

    Article  Google Scholar 

  47. Kuznetsova, V.V. and Sevchenko, A.N., Luminescence of organic europium, samarium, and terbium complexes, Izv. Akad. Nauk SSSR, Ser. Fiz., 1959, vol. 23, no. 1, pp. 2–8.

    CAS  Google Scholar 

  48. Yuanjing Cui, Yanfeng Yue, Guodong Qian, and Banglin Chen, Luminescent functional metal-organic frameworks, Chem. Rev., 2012, vol. 112, pp. 1126–1162.

    Article  Google Scholar 

  49. El’yashevich, M.A., Spektry redkikh zemel’ (Spectra of Rare Earths), Moscow: Gos. Izd. Tekhniko-Teoreticheskoi Lit, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Smagin.

Additional information

Original Russian Text © V.P. Smagin, N.S. Eremina, Z.V. Michueva, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 8, pp. 851–860.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smagin, V.P., Eremina, N.S. & Michueva, Z.V. Synthesis and luminescence spectra of (Y2O3–YOF):Ln(III) composites. Inorg Mater 53, 838–846 (2017). https://doi.org/10.1134/S0020168517080167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517080167

Keywords

Navigation